
FunCap
RAPID REVERSING WITH IDA PRO DEBUGGER

ANDRZEJ DERESZOWSKI



Who am I ?

Security consultant with focus on incident handling, forensics and malware analysis

Not a dedicated reverser – RE is just part of my job

=> I avoid RE as much as possible as it is just too time consuming



Tools we use
IDA Pro for static analysis

OllyDbg for debugging

(other tools used by real reversing gurus like PIN, metasm etc. are out of scope here)



Problem
=> Olly gives a lot of good info during debugging

… but this won’t be visible in IDA

=> Unpacked code – needs rebuilding to load in IDA, not always easy

IN SHORT: No automatic connection between the two tools



Idea
Why not connect both worlds and provide automated solution ?

First I wanted to use IDA Pro tracer but realized it is too slow and generating not easily-readable data with 
too much noise

The inspiration:
PaiMei Stalker by Pedram Amini - old and not developed any more, with only win32 userland support 

(uses PyDbg)

Places breakpoints at each function start based on imported IDB from IDA

Exports a script to load comments from the debugger to IDA’s listing

Let’s implement a solution by using IDA debugger !



Introducing FunCap
IDApython script/plugin

Aims to combine runtime info and feeds it into the static listing

IN SHORT: you can run some code in the sandbox VM and it will add useful comments to your 
IDA listing based on the recorded code execution

RESULT: you understand some functions without even looking at them  SAVES TIME!



Funcap – how it works
Places breakpoints on function call instructions (alternatively breakpoints can be places on 
function start and end)

Runs IDA debugger

When a breakpoint is hit it captures the arguments and function address and tries to 
dereference them and guess their type (currently only string, int and pointers)

Places a breakpoint directly after the call instruction

When the call returns they are dereferenced again to see how the memory was changed

This information is dumped to a text file and inserted into the IDA listing



Funcap – features (1)
Supports ia-32, ia-64 and ARM – more can easily be added

Supports Win32, Win64, Linux32, Linux64, Android. No MacOS or iOS yet.

Supports almost any IDA debugger connector, even PIN tracer connector 



Funcap – features (2)
Builds a runtime call graph 

code_discovery mode to automatically deal with packers

Python> code_discovery = True

…

0x9c299a: new code section detected: [0x9c1000, 0x9c3000]

hooking function: sub_9C299A()

Function call: sub_1000156E+147 to sub_9C299A (0x9c299a)



Funcap – features (3)
Resolves indirect calls

API calls can be captured as well

Full context is dumped to the file, subset of the context is pasted into IDAs’ listing annotations

Hexdump or ASCII capture format

Python> hexdump = True



Funcap – features (4)
Recursive argument dereferencing – idea taken from PEDA for GDB

Capture scope easily configurable (which registers etc.)

Recursive function hooking mode for large binaries

Python> d.recursive = True

Easy command line interface in Python

Functions that were executed are marked by a different color



Funcap DEMO
1. Taidoor – basic example

2. ZEUS/Citadel – usage of the call graph

3. Unknown APT – code_discovery mode

4. Snake/Uroburos – Funcap in kernel mode (just results)

5. Android – Funcap for ARM/Thumb (just results) 



Funcap – limitations
No threads following (recursive mode)

Code injected to another process is not going to be followed

Call graph a bit unfriendly to the user

Only basic types are dereferenced (no structures)

Argument count determination not very accurate on ia64 and ARM



Funcap – future directions
Threads following

◦ Breakpoint on thread creation ?

Remote process code injection following
◦ Cuckoo plugin ?

◦ Switching to kernel mode debugger ?

Better graph solution
◦ Visualize outside IDA (Gephi perhaps?)

Better argcount determination and complex types support
◦ Using decompiler plugin ?

Automation and database storage



Questions ?

deresz@gmail.com

http://github.com/deresz/funcap

mailto:deresz@gmail.com
http://github.com/deresz/funcap

