

Lessons learned while playing

CoreWars8086

Shapira Elad (‘Zest’) | Security Researcher | 29-6-2014

2

#Whois Elad Shapira (‘Zest’)

• Reverser from the Holy Land.

• Mobile Security Researcher @AVG.

• Highly passionate for RE, Assembly and Low-Level.

• Speaker (ClubHack, Ground Zero Summit..).

• Co-Organizer of CoreWars8086 competition (IL).

3

4

5

6

Why CoreWars8086?

Does it got any
sports in it?

“No Starch”..
ng

7

Agenda

• Timeline of the CoreWars8086 competition.

• Arena, Engines and rules.

• How to analyze and write survivors.

• Optimization.

• Anti reversing techniques.

• Future / Improvements.

• Share ideas Create new ideas!

• Hangover.

8

Origin

• Alexander Dewdney / D.G. Jones.

• CoreWars / RedCode

• http://vyznev.net/corewar/guide.html

Red's dead baby.

Red's dead.

http://vyznev.net/corewar/guide.html
http://vyznev.net/corewar/guide.html

9

Fight Club – The digital version..

10

Timeline of the competition

• Getting zombies from the organizers.

• 1st round (remote) – 25%

• 2nd round (Face-2-face) – 25% 09:00 AM

• 3rd round (Face-2-face) – 50% 12:01PM

• Top 4 survivors get to the final.

• Final Winners!

Zombies

Other competitors

Cameras usually add 5 kg ..

We got cool T-shirts from our sponsors!

11

Survivors in general

• Download, Unzip & play (Google Code).

• Survivor's name == file's name (without
extension).

• 8086 opcodes, 16bit instructions.

• Not all instructions are supported (Pusha,Popa,..).

• Compiled as ‘com’ file

• DOS command file format.

• Maximal survivor size - 512 bytes.

• Each team can submit two survivors.

• Rocky1 & Rocky2.

12

Virtual Arena

• Loaded to the virtual arena each time with
random address (copied “as is”).

• Distance between two survivors and the sides
is at least 1024 bytes.

• All cells initialized to ‘CCh‘ before start.

• End of the battle

• 200,000 rounds or one survivor left.

• Order of the survivors is determined
randomly at the beginning and cannot be
changed.

13

Arena (NOT virtual)

00 01 FE FF

00 0000 0001 00FE 00FF

01 0100 0101 01FE 01FF

: : : : :

: : : : :

FE FE00 FF01 FEFE FEFF

FF FF00 FF01 FFFE FFFF

14

Arena & Addresses

mov [2041h], al

mov [2045h], al

mov [2243h], al

mov [2340h], al

mov [2441h], al

mov [2542h], ax

mov [2444h], al

mov [2345h], al

15

Survivor’s Registers (before 1st round)

• BX,CX,DX,SI,DI,BP = 00s.

• Flags = 00s.

• AX, IP - Initial location of the survivor, offset.

• CS, DS - Segment that was assigned to the
survivors.

• ES - Segment for survivors from same team
(shared memory) – 2048 bytes.

• SS - Beginning of the personal stack (2048).

• ss:0x00 - ss:0x7ff, initialized to 0x00.

• SP - Offset of beginning of personal stack (00s).

16

How survivor gets killed

• Running illegal command

• The 060h byte does not translated to an
assembly command.

• Engine: “Died due to CPU”.

• Running commands that are not supported
by the engine

• For example ‘int 21h’.

• Access to memory not in the arena or not in
the range of the survivor's personal stack.

• For example ES:0x1234.

• Engine: “Died to memory exception”.

17

Zombies

• Sent by organizers before competition begins.

• Regular survivors that do not get points.

• Different CPU states problem.

• Direction flag (MOVSW will kill master).

• Zombies can still win the battle

• less points for us.

• We need to encourage them to commit suicide.

• Contain Math Riddles (That you need to solve).

18

Pwning bugs in the engine

How to make your survivors be the firsts to run?

0SurvivorName
What is the advantage?

19

Zombies can fix your survivor’s code

0SurvivorTeam1 (x2)

 SurvivorTeam2 (x2)

 SurvivorTeam3 (x2)

 Zombie1

 Zombie2

20

Zombies can fix your survivors code

0SurvivorTeam1 (x2)

 SurvivorTeam2 (x2)

 SurvivorTeam3 (x2)

 Zombie1

 Zombie2

0SurvivorTeam1 (x2)

 SurvivorTeam2 (x2)

 SurvivorTeam3 (x2)

 Zombie1

 Zombie2

21

Zombies can fix your survivors code

22

Zombies can fix your survivors code

0Survivo Team1 (x2)

 SurvivorTeam2 (x2)

 SurvivorTeam3 (x2)

 Zombie1

 Zombie2

23

To stay on the safe side..

24

Safe Cracking

25

Safe example#1

loop:
mov AX,[1234]
mov BX,3
mul AX
sub AX,1
jnz loop

killer:

mov AX, AAAB

mov ptr word [1234], AX

JMP killer

ZF=1

AX=1
BX*AX=1

Solution:

3*AX=1

[1234] = AAAB

26

Safe example#2

loop:

mov AL,[111]

add AL,0A8h

mov AH, [112]

xor AH,0ADh

mul AH

cmp AX,0xe0ff

jne loop ZF=1
AX=57599d

73+168=241(F1)

AX = AH * AL = 239 * 241 = 57599

[111] = 49H

ADH xor 42H = EFH (239d)

[112] = 42H

27

Safe example#2

killer:

mov AL, 49H

mov AH, 42H

mov ptr byte [111], AL
mov ptr byte [112], AH
jmp killer

Solution: loop:

mov AL,[111]

add AL,0A8h

mov AH, [112]

xor AH,0ADh

mul AH

cmp AX,0xe0ff

jne loop

28

Important factors

• Survivors usually contain

• Initialization.

• Bombing loop.

• Write -> Update address for next writing ->

 Jumping to beginning of loop

• We usually measure survivors by

• ‘Area of vulnerability’

• ‘Attack rate’.

• We can cause unexpected phenomenon

• mov AX, 0000 -> mov ax, 0cccch (2,3 bytes).

29

Looper

• Smallest functional survivor (EBFE, jmp $):

 Loop:

 Jmp loop

• Good to test other survivors.

30

Bomber Demo

Attack
sequence

Vulnerability
profile

3 / 1 5

mov al, 0CCh

mov bx, 0

@loop:

mov [bx], al

inc bx

jmp @loop

31

Cannon Demo

Attack
sequence

Vulnerability
profile

3 / 1 7

@start:
mov bx, ax
add bx, (@end - @start)
mov al, 0CCh

@loop:
mov [bx], al
add bx, 8

jmp @loop
@end:

32

Shooter Demo

Attack
sequence

Vulnerability
profile

3 / 2 6

MOV DI,AX
MOV AX,0CCCCh

@loop:
STOSW
ADD DI,9
JMP @loop

• Writes on 256 bytes (es:di -> 255 addresses)

• es same value as cs -> if not memory
exception after the interrupt

• CLD/STD -> change direction

• 2 Heavy Bombing each battle

• We can bomb shared segment

• INT 86h

CC

33

Heavy Bombing

CC CC CC

0000 0000 0/1

al ah dl dh

Direction flag es di es:di es:di+2

34

Heavy Bombing Demo (Opposite direction)

push cs

pop es

xor di,di

mov ax, 0cccch

mov dx, ax

std

int 86h

jmp $

35

Smart Bombing

• Bombing the first occurrence of AX:DX in
memory.

• Replacing it with data we want

• Illegal commands or jmp to our code.

• We can attack ourselves..

• 1 Smart Bombing each battle.

• INT 87

v v 7405h 39d8h

0 ? ?

Direction flag es di
7405h 39d8h

es:di es:di+2

AX DX CX BX

36

Protection from Smart Bombing

• Change functionality of registers (BX <-> BP).

• Usually does not matter.

• Change order of independent commands

• Put 3 values to 3 registers = Few different ways.

• copy parts of the code

• To the beginning and the end.

• Variable that changed during runtime near
main loop/code part (SP).

• Encoding with random numbers.

• XORing (will be discussed later).

37

Smart bombing FAIL protection (CGX#9.5)
jmp short 0x12
mov si,0x95a0
xchg ax,bx
cld
lodsw
std
cmp ax,bx
jnc 0xc
or al,0x90
lodsw
loop 0x6
mov si,0x95a0
xchg ax,bx
Cld
lodsw

Zombie (Dis)
std
cmp ax,bx
jnc 0x1c
or al,0x90
lodsw
loop 0x16
mov si,0x95a0
xchg ax,bx
cld
lodsw
std
cmp ax,bx
jnc 0x2c
or al,0x90
lodsw
loop 0x26

E2F4
BEA0

Zombie ==?

push cs

pop es

mov ax, 0F4E2h

mov dx, 0A0BEh

mov cx, 0cccch

mov bx,cx

STD

Int 87h

Jmp $

38

Binary search (“Lion in the desert”)

jmp short 0×12
..
mov si,0x95a0
xchg ax,bx
cld
lodsw
std
cmp ax,bx
jnc 0x1c
or al,0×90
lodsw
loop 0×16

Jumping to body

LODSW === MOV AX,[SI++ or SI--]

AX will hold the ‘talking location’

The "talking location" that the
survivors and the zombie talk in

Keep loading address on the side

(LODSW will change AX)

Clears the direction flag (DF=0)

DF=1 (later SUB SI, 2 to change back)

39

Binary search (“Lion in the desert”)

jmp short 0×12
..
mov si,0x95a0
xchg ax,bx
cld
lodsw
std
cmp ax,bx
jnc 0x1c
or al,0×90
lodsw
loop 0×16

Compare his address (BX) to talking
location (AX) - change only flags.

changes AL + AX changed again?

jumps into itself (IP increased by 1)

AX >= BX

73 FF

0C 90

73 FF

0C 90

Dec [si]

nop

DF=1 (sub si, 2 to change back)

Next cell

hidden Dec[Si] command

push cs
pop es
int 0x87
and ax,0x7fff
push ax
mov bl,[0xc0de]
test bl,bl
jns 0x16
div bl
mov [0xc0dd],ah
pop ax
jmp short 0x7

40

6 Zombies mov bl,[0xc0de]

mov bl,[0xc1de]

mov bl,[0xc2de]

mov bl,[0xc3de]

mov bl,[0xc4de]

mov bl,[0xc4de]

mov [0xc0dd],ah

mov [0xc1dd],ah

mov [0xc2dd],ah

mov [0xc3dd],ah

mov [0xc4dd],ah

mov [0xc4dd],ah

Zombie ==?

41

Chinese Remainder Theorem

Formula used to find all the zombies:

input = ?

a1 = (input%254);

a2 = (input%255);

input = (a1*255*1 + a2*254*254)%(255*254);

Not to be confused with the military theorist Sun Tzu

42

Sometime, the organizers

send invalid zombies…

43

Optimization

44

How not to be seen

45

#1 – Anti Disassembly

FF =
will never
happen

1F =
pop ds

Disassembly

Original

IamAramAcham
CGX9

Mu-Ha-Ha-Ha!

46

#2 – Usage of unsupported registers (1/2)

• FS is unsupported by engine.

• difference between opcode interpretation
between 8086 and later processors like 80386

• 8086 processor will read it like ‘ES’.

push es, ds

move bx, ds

mov fs, bx

HutsHuts
CGX3

47

#2 – Usage of unsupported registers (2/2)

• mov <segment register>, <general purpose
register>

• Binary value: 10001110oosssmmm

 000 - ES
001 - CS
010 - SS
011 - DS
100 FS (only 386+)
101 GS (only 386+)

Advanced processors 8086 processor

Ignore first bit

mov fs,bx =>

mov es, bx

48

#3 - Problems with old debuggers

• Targeting flaws that can be found in debuggers.

• Example: debug.exe.

• SP (Stack Pointer) gets really small

 value like ‘4’ -> debugger crush.

Apocalypse
CGX4

49

#4 - Random bits

• Write multiple INT3 (‘CC’ , unsupported opcode)
in places that are not part of the code flow.

• After compilation replace all occurrences of ‘CC’
to random bits (Hex Editor/script).

• For example F1, D6 etc.

Apocalypse
CGX4

50

#5 – XORing the code

• Taking survivor’s body and generate two
binary strings - XOR of them will be the body
of the original survivor.

• During runtime every survivor copy his part
to the shared memory and they calculate
XOR of the two parts before it is run by the
survivor.

• Also Smart bombing protection..

XLII
CGX5

51

#6 – Copy of a zombie

• Copy zombie into our survivors so others will
pwn a fake zombie instead of the real one.

• Cons: valuable space is wasted.

HutsHuts
CGX3

52

#7 – Different Versions

Let them reverse
vulnerable, lame
version

Keep all your
good stuff for
this version

All survivors
CGX5

53

That's what happens to a team that achieves

1st place before the final round..

54

Detect Relationship

1 – Generating ASM

instruction trace

1 PUSH

2 MOV

..

17 MOV

18 CALL

..

34 MOV

35 CALL

…

42 MOV

43 CALL

2 –ASM counts

PUSH

MOV

CALL

P
U

S
H

M
O

V

C
A
L
L

0 0 0

0 0 3

0 0 0

3 –Probabilities

PUSH

MOV

CALL

P
U

S
H

M
O

V

C
A
L
L

0 0 0

0 0 1/6

0 0 0

4 – Weighted directed graph for code

MOV CALL

Successor

5 – Weighted directed graph for code

1/6
1

2

3

55

Genetic Programming

• A lot of work was done on RedCode

• John Perry , Jason Boar, Ryan Colman,

 Wilkies Benchmark, Dave Hillis and others.

• One effort was done on CoreWars8086.

• Darwin8086.

• Gen = Warrior = String 1-512 bytes.

• Chromosome

• Bit, Command, Meta-command, Combination,..

• Fitness function – Endogeny, Exogeny.

56

Graphical Survivors (Make Love Not War)

• R

2D 3D BALL

SIR S HALF

57

Graphical Survivors (Make Love Not War)

• R

2D 3D BALL

SIR S HALF

1st wedding

proposal?

Come on you
Hexy Boy..

58

Future? Improvements?

59

This is how can we add ‘hardware hacking’..

#@&%*^@& !!!!!!!
I knew I should
stick to PHP !!!

Scrum? Agile?

60

Q & A / Feedback

Contact: Elad.Shapira@avg.com

 eladexposed@gmail.com

61

Thank you! Merci!

ACK

• Hugo, Sam, Elizabeth and the ReCon team!!!

• Dr. Oded Margalit, Assaf Nativ, Ange Albertini,
ShiftReduce, SonOfLilit, Danny Leshem,

 DualCore and Others..

• AVG, Oren Barad & The team.

• My (brave) Wife & kids.

• 300 Ninjas & Reversers..

mailto:Elad.Shapira@avg.com
mailto:eladexposed@gmail.com

