
© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved. © 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

Reversing and Auditing

 Android’s Proprietary Bits

Joshua J. Drake

REcon 2013

June 23rd 2013

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

Agenda

Introduction

Background

Proprietary Code

Reversing

Auditing

Case Studies

Conclusion / Q & A

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Joshua J. Drake, aka jduck

• Director of Research and Development

• Previously Senior Research Consultant

• Former Lead Exploit Developer at

• Research background:

• Linux – 1994 to present

• Android – 2009 to present

• Demonstrated Android 4.0.1 browser exploit with

Georg Wicherski at BlackHat USA 2012

• Lead author of “Android Hacker’s Handbook”

Introduction

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

BACKGROUND
Why look at Android’s proprietary bits?

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Android !!

• Most common operating system (period)

• Complex ecosystem

• Primarily ARM devices

• Linux based

• “Open source”

• Developed in Java/C/C++

Background – Android

Did he really just try the

Jedi Mind Trick on me?

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

Background – Ecosystem

Google

Consumers

Everything

Lower-level

Everything

Apps

boot loader

and radio

requirements

SoC Manufacturers

OEMs

Carriers

Diagram by Pau Oliva

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Almost entirely ARM devices out there

Background - Devices

Image provided by Snowflake Bentley – http://snowflakebentley.com/

http://snowflakebentley.com/

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

Background – My devices

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Android Open Source Project (AOSP)

• "Outside of proprietary device-specific files that

come from hardware manufacturers, the basic rule is

that everything is Open Source except the apps that

talk to Google services: we want to be sure that the

Android platform itself remains free of Google-

specific code.”

• Sums it up superbly!

Background – “Open source”

via Jean-Baptiste Quéru (AOSP maintainer, actually pushes the code)

https://plus.google.com/112218872649456413744/posts/g8YnZh5begQ

https://plus.google.com/112218872649456413744/posts/g8YnZh5begQ
https://plus.google.com/112218872649456413744/posts/g8YnZh5begQ
https://plus.google.com/112218872649456413744/posts/g8YnZh5begQ

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Building your own firmware from AOSP requires

binary blobs

• Nexus 4 factory images taken down shortly

after they were first posted

• Licensing issue maybe?

• Sometimes source code doesn’t match the bins

• Example: Nexus 4 kernel config

• live device has CONFIG_MODULES=n

• Kernel source has CONFIG_MODULES=y

Background – “Open source”

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

PROPRIETARY CODE
No source code, no docs, no bugs, right?

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Closed-source binary code is littered everywhere!

• Third party licensed code

• Nth party software

• You can find proprietary software…

• In the kernel, modules

• In user-space

• In lower-level areas

• Even apps

• Really anywhere…

Proprietary Code – What kinds?

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Tons of stuff deep under the hood
• Boot loaders

• TrustZone OS / TZ apps

• Baseband

• Kernel space drivers
• Developed by OEMs or licensed from 3rd parties

• File system drivers, WiFi, Bluetooth, etc

• User-space
• rild / vendor-ril

• TrustZone storage (no persistent storage in TZ)

Proprietary Code – What kinds?

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Device tree concept

• Commonly heard in rom development communities

• “device” directory in AOSP

• Binary blobs required for a particular device

• Nexus devices

• Nexus binary-only drivers page

• OEM devices

• Only from “stock roms”, updates, live devices

Proprietary Code

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Getting proprietary binaries is usually easy

• From “roms” or updates
• Often requires special extraction methods

• Google for “<device> stock rom”

• Unpacking tools vary :-/

• From a live device
• Dumping partitions

• /vendor, /firmware, /sbin, other directories

• Works even when no OTA or factory images are
available!

Proprietary Code – Getting Bins

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Enumerating process list

• Comparing it against a Nexus device

• Exclude core services

Proprietary Code – Finding more

root@android:/ # getprop ro.build.version.release

4.2.2

root@android:/ # ps | grep -v ' 2 ' | wc -l

56

root@cdma_maserati:/data # getprop ro.build.version.release

4.1.2

root@cdma_maserati:/data # ps | grep -v ' 2 ' | wc -l

79

ps | grep -v ' 2 ' | grep -Ev

'/(vold|rild|debuggerd|drmserver|mediaserver|surfaceflinger|installd|netd|

keystore|ueventd|init|servicemanager|adbd)'

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Enumerating the file system

• Again, diff against a Nexus device

• Various directories to look in…

• /vendor, /system/vendor

• /firmware

• /system/lib includes some too

• Inside apps’ data directories

• As easy as a few shell commands

Proprietary Code – Finding more

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Enumerating the file system

Proprietary Code – Finding more

dq:0:~/android/cluster$./oneliner.rb getprop ro.build.fingerprint | grep JRO

[*] nexus-s: google/sojus/crespo4g:4.1.1/JRO03R/438695:user/release-keys

[*] sgs3: samsung/d2spr/d2spr:4.1.1/JRO03L/L710VPBLJ7:user/release-

keys

dq:0:~/android/cluster$./cmd.rb <DEVICE> su –c /data/local/tmp/busybox find

/ -print > /data/local/tmp/find.log

dq:0:~/android/cluster$ ls -l *.log

-rw------- 1 jdrake jdrake 4.2M Jun 23 12:18 nexus-s_find.log

-rw------- 1 jdrake jdrake 9.3M Jun 23 12:20 sgs3_find.log

dq:0:~/android/cluster$ grep ^/system/lib/ nexus-s_find.log | sort > 1

dq:0:~/android/cluster$ grep ^/system/lib/ sgs3_find.log | sort > 2

dq:0:~/android/cluster$ wc –l 1 2

 206 1

 539 2

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

Proprietary Code – Finding more

dq:0:~/android/cluster$ diff –ub 1 2

--- 1 Sun Jun 23 12:29:01 2013

+++ 2 Sun Jun 23 12:28:50 2013

@@ -4,49 +4,133 @@

 /system/lib/bluez-plugin/input.so

 /system/lib/bluez-plugin/network.so

 /system/lib/drm

+/system/lib/drm/libdivxplugin.so

+/system/lib/drm/libdrmwvmplugin.so

 /system/lib/drm/libfwdlockengine.so

+/system/lib/drm/libomaplugin.so

+/system/lib/drm/libplayreadyplugin.so

+/system/lib/drm/libtzprplugin.so

 /system/lib/egl

 /system/lib/egl/egl.cfg

+/system/lib/egl/eglsubAndroid.so

…and more…

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Make sure you look for the source first!

• Even though something looks closed, it may be

based on open-source code

• Check and double-check

• Source will save you time

• If you still use the bins, the source can help lots

Proprietary Code – Final note

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

REVERSING
Source code is overrated.

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Two approaches to reverse engineering

• Static analysis

• Dynamic analysis

• There’s real power in combining the two!

• ie. resolving indirect code or data flow

Reversing

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Reversing ARM binaries can be tricky

• Thumb vs ARM – troublesome and manual

• Looking at ARMv7 bins with IDA Pro

1. Open the binary

2. Select ARM from processor type drop-down (tab, home)

3. Click button “Set” button (tab, space)

4. Click “Processor options” (alt-p)

5. Click “Edit ARM architecture options” (tab, space)

6. Click “ARM v7 A&R”

7. Click “OK”, “OK”, “OK”

8. Dig in!

Reversing – Static Analysis

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• String analysis

• Your best friend!

Reversing – Static Analysis

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• De-compilation - Hex-rays helps!

• Faster to read C-style pseudo code

• Structure recovery

• Type propagation

• Great for C++

• Some issues with Linux-kernel ASM functions

• Using symbols

• Linux imports / exports are by name only

• Common to find decent symbols

Reversing – Static Analysis

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Differential analysis

• Comparing binaries

• Comparing file system entries

• Comparing running processes

• Comparing specific files

• Mostly for re-discovering known bugs

• Useful for watching evolution of some code

Reversing – Static Analysis

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Grooming your IDB helps tremendously

• Look for:

• Functions with tons of cross-references

• Large functions

• If the bin has no imports (compiled static)

• Try to identify common library functions first

• memcpy, strcpy, strlen, strncpy, strlcpy, etc etc etc

Reversing – Static Analysis

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• User-space debugging options

• logcat

• Light on information, but still useful

• Useful to see known strings

• GDB

• Apparently not the most stable tool

• Python support in latest AOSP

• Remote debugging is slow

• Lack of symbols causes major problems

Reversing – Dynamic Analysis

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Symbols are more important on ARM

• $a – ARM code

• $t – Thumb code

• $d – Data

• GDB _relies_ on these
• No symbols means manual ARM vs Thumb

• Add 1 for Thumb when using x/i, setting breakpoints, etc

• Use the thumb bit in $cpsr!

Reversing – Dynamic Analysis

$ readelf –a binary | grep ‘ \$’

 31: 00008600 0 NOTYPE LOCAL DEFAULT 8 $a

 32: 000087b4 0 NOTYPE LOCAL DEFAULT 8 $d

 …

 37: 00008800 0 NOTYPE LOCAL DEFAULT 8 $t

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Instrumentation / Hooking

• Much more efficient

• Challenges

• ARM vs Thumb (again)

• Cache issues

• No standard prologues

• pc-relative data

• Although tedious, can be achieved, see:

• Collin Mulliner’s android_dbi

• saurik’s Mobile Substrate

Reversing – Dynamic Analysis

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Kernel / boot loader debugging

• JTAG (probably disabled)

• USB-UART cables (Samsung and Nexus 4)

• kgdb possible with a custom kernel

• Kernel debugging

• proc file system (kmsg, last_kmsg)

• Changing the kernel command line

• Requires a custom boot.img

Reversing – Dynamic Analysis

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Instrumentation / Hooking

• Again, much more efficient

• kprobes, jprobes

• Requires a custom kernel

• Custom hooking

• Needs only root

• Same challenges as user-space

Reversing – Dynamic Analysis

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

AUDITING
But didn’t we fix all the bugs already?

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Several methodologies
• Top-down

• Follows data flow / tainted input

• API-based

• Unsafe use of buffer functions

• Format string vulnerabilities

• Unsafe command execution usage

• Checking memory allocations

• Checking static buffer usage

• Grep-for-bugs

• Sign extension bugs

• Integer overflows in allocations, etc

Auditing

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Force Multipliers

1. Learn as much as you can

2. Deep understanding of the OS, APIs, architecture

helps

3. Taking advantage of source, docs, etc

• NO ASSUMPTIONS.

• Take lots of notes!

• Make comments and marks in IDA

Auditing Tips

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Auditing binaries makes some bugs obvious

• Pros

• CPP macros are eliminated

• Compiler may do something horribly wrong

• No comments means no misleading statements

• Likely to be less audited

• Cons

• More work to see the higher level

• Binary auditing requires assembly skills

• Unfortunately slower going

• Dealing with indirection statically is a pain

Auditing – Binaries vs. Source

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Low-level software attack surfaces

• Boot loaders

• partition table/data

Attack Surfaces – Low-level

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Issue in the SGS4 boot loader

• Discovered / released by Dan Rosenberg

• For Qualcomm based devices (AT&T, VZW)

• Allows bypassing secure boot chain

• Can boot a custom kernel / ramdisk

• Samsung’s “aboot”, final stage boot loader

• Verifies a signature on the “boot.img”

• Based on the open source LK boot loader

• Had a few modifications

Case Study - Loki

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Using the base source and binary from the

device together helps get and stay oriented

• The code:

Case Study - Loki

hdr = (struct boot_img_hdr *)buf;

 image_addr = target_get_scratch_address();

 kernel_actual = ROUND_TO_PAGE(hdr->kernel_size, page_mask);

…

 /* Load kernel */

 if (mmc_read(ptn + offset, (void *)hdr->kernel_addr, kernel_actual)) {

 dprintf(CRITICAL, "ERROR: Cannot read kernel image\n");

 return -1;

 }

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• OOPS!

• They trusted data in the boot.img header when

reading from flash!

• Dan overwrote the aboot code itself

• Replaced the signature checking function with his

own

• Simply fixed up the mess and returned success

Case Study - Loki

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Low-level software attack surfaces

• TrustZone

• From ring0 only

Attack Surfaces – Low-level

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Motorola TrustZone OS vulnerability

• Discovered / released by Dan Rosenberg

• Allows unlocking the boot loader

• Could potentially allow more…

• Boot loader uses QFUSES

• Can only be set one time!

• Used by the OEM-supported unlock mechanism

Case Study - Motopocalypse

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• TrustZone uses SMC instruction

• Secure Monitor Call

• Similar to how user-space calls kernel-space

• Requires ring0 code execution

• Processed inside TrustZone

• Dan found a bug in some TrustZone code

Case Study - Motopocalypse

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Inside Motorola’s SMC handling code:

Case Study - Motopocalypse

switch (code) {

 ...

 case 9:

 if (arg1 == 0x10) {

 for (i = 0; i < 4; i++)

 *(unsigned long *)(arg2 + 4*i) = global_array[i];

 ret = 0;

 } else

 ret = -2020;

 break;

 ...

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• OOPS!

• Attacker-controlled memory write!

• Dan overwrote an important flag

• Enabled boot-loader-only SMC operations

• Called OEM-supported unlock code

• Voila!

• Unlocked boot loader via buggy proprietary code.

Case Study - Motopocalypse

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Low-level software attack surfaces

• Baseband

• RF based attacks

• From application processor

Attack Surfaces – Low-level

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• What is S-OFF?

• “Security Off”

• Relates to locked flash memory in HTC devices

• Prevents writing to /system

• Even with root

• Event after remounting

• Some tools turn this off using baseband

exploits!

• They start with root, attack the baseband from the

application processor

Case Study – S-OFF

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Hardware attacks

• USB – UART cables

• Via headphone jack on Nexus 4

• Using special OTG cable on Samsung devices

• JTAG

• Usually disabled

• Other bus-based attacks

• SPI

• I2C

• etc

Attack Surfaces – Low-level

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Custom / third party kernel modules

• Attack surfaces

• Traditional Linux attack surfaces

• proc, sys, debug, etc file systems

• ioctl on open file descriptors

• Custom implementations of POSIX apis

• ie. custom mmap handler

• Depends largely on the type of driver

Attack Surfaces – Kernel

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Attack surfaces

• Insecure file system permissions

• Unsafe shell operations during boot

• Socket endpoints (TCP, UDP, NETLINK, UNIX,

abstract domain)

• BroadcastReceivers, ContentProviders, etc

• Enumerate via proc file system

Attack Surfaces – User-space

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

UNDISCLOSED CASE STUDY
Oh, look! Bugs! Who knew?

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

DEMO

Undisclosed Case Study

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

CONCLUSIONS

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Fragmentation rampant
• Complicates attacks

• Helps defense a bit

• The ARM architecture is a PITA

• Proprietary bits of Android are great to audit
• Requires more skills, less people have done it

• Buggy code, surely still more bugs lurking

• Donate unwanted Android devices to us!

Conclusions

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

PLEASE ASK QUESTIONS!
About Android, code, bugs, the book,

anything…

Joshua J. Drake

Twitter: @jduck / IRC: jduck

jdrake [circled-a] accuvant.com

www.accuvant.com

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

Joshua J. Drake

Twitter: @jduck / IRC: jduck

jdrake [circled-a] accuvant.com

www.accuvant.com

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

BONUS SLIDES
These didn’t make the cut.

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

• Android Open Source Project (AOSP)

• Kind of a misnomer :-/

• Google pushes their source after releases

• Not true open source

• Sets a bad example

• Downstream (OEMs, etc) modify AOSP

• How many of you have checked out a copy?

Background – “Open source”

