® ACCUVANT

eversing and Auditing
Android’s Proprietary Bits

Joshua J. Drake
REcon 2013
June 231 2013

‘ Introduction

b Background

‘ Proprietary Code
‘ Reversing

‘ Auditing

‘ Case Studies

/‘ Conclusion/ Q & A

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

Introduction

« Joshua J. Drake, aka jduck
« Director of Research and Development

* Previously Senior Research Consultant
- Former Lead Exploit Developer at mmetasplmt‘ﬁ’

- Research background:
Linux — 1994 to present
Android — 2009 to present

- Demonstrated Android 4.0.1 browser exploit with
Georg Wicherski at BlackHat USA 2012

 Lead author of “Android Hacker’'s Handbook”

BACKGROUND

Why look at Android’s proprietary bits?

o
Background — Android

* Android !!
* Most common operating system (period)
« Complex ecosystem
* Primarily ARM devices
* Linux based
* “Open source”
« Developed in Java/C/C++

Did he really just try the
Jedi Mind Trick on me?

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

Background — Ecosystem

Everything

Lower-level

Everything

Apps
boot loader
and radio

requirements

Diagram by Pau Oliva

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

)</
Background - Devices

* Almost entirely ARM devices out there

Image provided by Snowflake Bentley —

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

http://snowflakebentley.com/

Background — My devices

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

~

~ Background — "Open source”

* Android Open Source Project (AOSP)

via Jean-Baptiste Quéru (AOSP maintainer, actually pushes the code)

« "Qutside of proprietary device-specific files that
come from hardware manufacturers, the basic rule is
that everything is Open Source except the apps that
talk to Google services: we want to be sure that the
Android platform itself remains free of Google-
specific code.”

* Sums it up superbly!

https://plus.google.com/112218872649456413744/posts/g8YnZh5begQ
https://plus.google.com/112218872649456413744/posts/g8YnZh5begQ
https://plus.google.com/112218872649456413744/posts/g8YnZh5begQ

~

~ Background — "Open source”

Building your own firmware from AOSP requires
binary blobs

Nexus 4 factory images taken down shortly
after they were first posted
* Licensing issue maybe?

Sometimes source code doesn’t match the bins

- Example: Nexus 4 kernel config
live device has CONFIG_MODULES=n
Kernel source has CONFIG_MODULES=y

PROPRIETARY CODE

No source code, no docs, no bugs, right?

~

~ Proprietary Code — What kinds?

* Closed-source binary code is littered everywhere!
« Third party licensed code
* Nth party software

* You can find proprietary software...
* |In the kernel, modules
* |In user-space
* In lower-level areas
 Even apps
* Really anywhere...

~

~ Proprietary Code — What kinds?

* Tons of stuff deep under the hood
* Boot loaders
* TrustZone OS / TZ apps
- Baseband

» Kernel space drivers
- Developed by OEMSs or licensed from 3" parties
* File system drivers, WiFi, Bluetooth, etc

* User-space
* rild / vendor-ril
« TrustZone storage (no persistent storage in TZ)

~

~ Proprietary Code

* Device tree concept
« Commonly heard in rom development communities
* “device” directory in AOSP
* Binary blobs required for a particular device

* Nexus devices
* Nexus binary-only drivers page

 OEM devices
* Only from “stock roms”, updates, live devices

~

~ Proprietary Code — Getting Bins

« Getting proprietary binaries is usually easy

 From “roms” or updates

Often requires special extraction methods
Google for “<device> stock rom”
Unpacking tools vary :-/

* From a live device

Dumping partitions
/vendor, /[firmware, /sbin, other directories

Works even when no OTA or factory images are
available!

o'
Proprietary Code — Finding more

* Enumerating process list
- Comparing it against a Nexus device
« Exclude core services

root@android:/ # getprop ro.build.version.release
4.2.2

root@android:/ # ps | grep-v'2"'|wc -

56

root@cdma_maserati:/data # getprop ro.build.version.release
4.1.2
root@cdma_maserati:/data # ps | grep -v'2 "' | wc -l

ps|grep-v'2'|grep-Ev
‘/(vold|rild|debuggerd|drmserver|mediaserver|surfaceflinger|installd|netd|
keystore|ueventd|init|servicemanager|adbd)'

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

-

Proprietary Code — Finding more

* Enumerating the file system
« Again, diff against a Nexus device

* Various directories to look in...
« /vendor, /system/vendor
« [firmware
« /system/lib includes some too
* |Inside apps’ data directories

« As easy as a few shell commands

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

<

Proprietary Code — Finding more

* Enumerating the file system

dqg:0:~/android/cluster$./oneliner.rb getprop ro.build.fingerprint | grep JRO
[*] nexus-s: google/sojus/crespo4g:4.1.1/JRO03R/438695:user/release-keys
[*] sgs3: samsung/d2spr/d2spr:4.1.1/JRO03L/L710VPBLJ7:user/release-
keys
dg:0:~/android/cluster$./cmd.rb <DEVICE> su —c /data/local/tmp/busybox find
/ -print > /data/local/tmp/find.log
dg:0:~/android/cluster$ Is -I *.log
-FW------- 1 jdrake jdrake 4.2M Jun 23 12:18 nexus-s_find.log
-FW------- 1 jdrake jdrake 9.3M Jun 23 12:20 sgs3_find.log
dqg:0:~/android/cluster$ grep ~/system/lib/ nexus-s_find.log | sort > 1
dg:0:~/android/cluster$ grep ~/system/lib/ sgs3_find.log | sort > 2
dq:0:~/android/cluster$ wc —| 1 2

206 1

2

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

Proprietary Code — Finding more

dqg:0:~/android/cluster$ diff —ub 1 2
---1 SunJun 23 12:29:01 2013
+++ 2 Sun Jun 23 12:28:50 2013
@@ -4,49 +4,133 @@
/system/lib/bluez-plugin/input.so
/system/lib/bluez-plugin/network.so
/system/lib/drm
+/system/lib/drm/libdivxplugin.so
+/system/lib/drm/libdrmwvmplugin.so
/system/lib/drm/libfwdlockengine.so
+/system/lib/drm/libomaplugin.so
+/system/lib/drm/libplayreadyplugin.so
+/system/lib/drm/libtzprplugin.so
/system/lib/egl|
/system/lib/egl/eql.cfg
+/system/lib/egl/eglsubAndroid.so

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

~

~ Proprietary Code — Final note

Make sure you look for the source first!

Even though something looks closed, it may be
based on open-source code

Check and double-check

- Source will save you time
* If you still use the bins, the source can help lots

REVERSING

Source code is overrated.

7

Reversing

« Two approaches to reverse engineering
- Static analysis
« Dynamic analysis

* There's real power in combining the two!
* ie. resolving indirect code or data flow

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

~

Reversing — Static Analysis

* Reversing ARM binaries can be tricky
e Thumb vs ARM — troublesome and manual

* Looking at ARMv7 bins with IDA Pro

Open the binary

Select ARM from processor type drop-down (tab, home)
Click button “Set” button (tab, space)

Click “Processor options” (alt-p)

Click “Edit ARM architecture options” (tab, space)

Click “ARM v7 A&R”

Click “OK”, “OK”, “OK”

Dig in!

008 S G OIS ORI

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

~Reversing — Static Analysis

» String analysis
* Your best friend!

[RA]
[RZ.#&1

#a
[R41

locret_C47C
oy

~

Reversing — Static Analysis

« De-compilation - Hex-rays helps!
« [Faster to read C-style pseudo code
« Structure recovery
« Type propagation
* Great for C++
* Some issues with Linux-kernel ASM functions

* Using symbols
* Linux imports / exports are by name only
Common to find decent symbols

~

Reversing — Static Analysis

Differential analysis

- Comparing binaries

- Comparing file system entries
« Comparing running processes
« Comparing specific files

« Mostly for re-discovering known bugs
« Useful for watching evolution of some code

~

Reversing — Static Analysis

* Grooming your IDB helps tremendously

 Look for:
 Functions with tons of cross-references
« Large functions

 If the bin has no imports (compiled static)

« Try to identify common library functions first
memcpy, strcpy, strlen, strncpy, stricpy, etc etc etc

7

Reversing — Dynamic Analysis

« User-space debugging options

* logcat
 Light on information, but still useful
« Useful to see known strings

- GDB
« Apparently not the most stable tool
« Python support in latest AOSP
« Remote debugging is slow
« Lack of symbols causes major problems

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

=

Reversing — Dynamic Analysis

* Symbols are more important on ARM

$ readelf —a binary | grep ‘ \$’
31: 00008600 O NOTYPE LOCAL DEFAULT 8 %$a
32: 000087b4 O NOTYPE LOCAL DEFAULT 8¢&%d

37: 00008800 O NOTYPE LOCAL DEFAULT 8 $t

« $a - ARM code
 $t— Thumb code
« $d — Data

« GDB relies on these
* No symbols means manual ARM vs Thumb
« Add 1 for Thumb when using X/i, setting breakpoints, etc
« Use the thumb bit in $cpsr!

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

7

Reversing — Dynamic Analysis

* Instrumentation / Hooking
« Much more efficient

« Challenges
 ARM vs Thumb (again)
« Cache issues
* No standard prologues
* pc-relative data

- Although tedious, can be achieved, see:
e Collin Mulliner’s android_dbi
« saurik’s Mobile Substrate

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

~

Reversing — Dynamic Analysis

- Kernel / boot loader debugging
« JTAG (probably disabled)

« USB-UART cables (Samsung and Nexus 4)
kgdb possible with a custom kernel

- Kernel debugging
« proc file system (kmsg, last_kmsg)

« Changing the kernel command line
Requires a custom boot.img

7

Reversing — Dynamic Analysis

* |nstrumentation / Hooking
* Again, much more efficient

* Kkprobes, jprobes
« Requires a custom kernel

* Custom hooking
* Needs only root
« Same challenges as user-space

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

AUDITING

But didn’t we fix all the bugs already?

~Auditing

- Several methodologies

« Top-down
* Follows data flow / tainted input

« APIl-based

* Unsafe use of buffer functions

* Format string vulnerabilities

« Unsafe command execution usage
* Checking memory allocations

« Checking static buffer usage
« Grep-for-bugs

« Sign extension bugs
* Integer overflows in allocations, etc

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

-
<

~ Auditing Tips

* Force Multipliers
1. Learn as much as you can

2. Deep understanding of the OS, APIs, architecture
helps

3. Taking advantage of source, docs, etc
* NO ASSUMPTIONS.

 Take lots of notes!
« Make comments and marks in IDA

-

Auditing — Binaries vs. Source

* Auditing binaries makes some bugs obvious
* Pros

CPP macros are eliminated

Compiler may do something horribly wrong

No comments means no misleading statements
Likely to be less audited

e (Cons

More work to see the higher level

Binary auditing requires assembly skills
Unfortunately slower going

Dealing with indirection statically is a pain

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

~Attack Surfaces — Low-level

 Low-level software attack surfaces

« Boot loaders
partition table/data

~

~ Case Study - Lokl

* Issue In the SGS4 boot loader
* Discovered / released by Dan Rosenberg
* For Qualcomm based devices (AT&T, VZW)

« Allows bypassing secure boot chain
Can boot a custom kernel / ramdisk

« Samsung’s “aboot”, final stage boot loader
* Verifies a signature on the “boot.img”
- Based on the open source LK boot loader
- Had a few modifications

</
Case Study - Loki

* Using the base source and binary from the
device together helps get and stay oriented

« The code:

hdr = (struct boot_img_hdr *)

iImage_addr = target_get_scratch_address();

kernel _actual = ROUND_ TO_PAGE(, page_mask);
[* Load kernel */
if (mmc_read(ptn + offset, (void *)) {
dprintf(CRITICAL, "ERROR: Cannot read kernel |mage\n ;
return -1;

}

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

~

~ Case Study - Lokl

« OOPS!

* They trusted data in the boot.img header when
reading from flash!

« Dan overwrote the aboot code itself

* Replaced the signature checking function with his
own

« Simply fixed up the mess and returned success

~Attack Surfaces — Low-level

 Low-level software attack surfaces

* TrustZone
From ring0 only

~

~ Case Study - Motopocalypse

* Motorola TrustZone OS vulnerabillity
* Discovered / released by Dan Rosenberg
« Allows unlocking the boot loader
* Could potentially allow more...

« Boot loader uses QFUSES

« Can only be set one time!
« Used by the OEM-supported unlock mechanism

~

~ Case Study - Motopocalypse

 TrustZone uses SMC instruction
« Secure Monitor Call

« Similar to how user-space calls kernel-space
* Requires ring0 code execution
* Processed inside TrustZone

« Dan found a bug in some TrustZone code

Case Study - Motopocalypse

* Inside Motorola’s SMC handling code:

switch () {

case 9:
If (== 0x10){

for (I=0;1<4;i++)
*(unsigned long *)(+ 4*)) = global_array]i];
ret = 0;
} else
ret = -2020;
break;

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

~

~ Case Study - Motopocalypse

« OOPS!
« Attacker-controlled memory write!

- Dan overwrote an important flag
* Enabled boot-loader-only SMC operations
« Called OEM-supported unlock code

* Voila!
« Unlocked boot loader via buggy proprietary code.

~Attack Surfaces — Low-level

 Low-level software attack surfaces

- Baseband
* RF based attacks
« From application processor

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

~

- Case Study — S-OFF

 What is S-OFF?
« “Security Off”
« Relates to locked flash memory in HTC devices

* Prevents writing to /system
Even with root
Event after remounting

« Some tools turn this off using baseband
exploits!

« They start with root, attack the baseband from the
application processor

-
<

~Attack Surfaces — Low-level

« Hardware attacks

USB — UART cables

* Via headphone jack on Nexus 4
* Using special OTG cable on Samsung devices

JTAG
« Usually disabled

Other bus-based attacks
- SPI
- 12C
e eftc

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

~

~ Attack Surfaces — Kernel

* Custom / third party kernel modules

 Attack surfaces

Traditional Linux attack surfaces
proc, sys, debug, etc file systems
loctl on open file descriptors

Custom implementations of POSIX apis
le. custom mmap handler

Depends largely on the type of driver

~

~Attack Surfaces — User-space

 Attack surfaces

* Insecure file system permissions
Unsafe shell operations during boot

« Socket endpoints (TCP, UDP, NETLINK, UNIX,
abstract domain)

 BroadcastReceivers, ContentProviders, etc
* Enumerate via proc file system

UNDISCLOSED CASE STUDY

Oh, look! Bugs! Who knew?

~_Undisclosed Case Study

DEMO

CONCLUSIONS

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

~

Conclusions

* Fragmentation rampant
« Complicates attacks
* Helps defense a bit

« The ARM architecture i1s a PITA

* Proprietary bits of Android are great to audit
* Requires more skills, less people have done it

* Buggy code, surely still more bugs lurking

 Donate unwanted Android devices to us!

PLEASE ASK QUESTIONS!

About Android, code, bugs, the book,

anything...

Joshua J. Drake

Twitter: @jduck / IRC: jduck
jdrake [circled-a] accuvant.com
www.accuvant.com

B ACCUVANT

THE AUTHORITATIVE SOURCE FOR INFORMATION SECURITY

Joshua J. Drake
Twitter: @jduck / IRC: jduck
jdrake [circled-a] accuvant.com
www.accuvant.com

© 2013 Joshua J. Drake of Accuvant, Inc. All Rights Reserved.

tjoshua brake s2ach Laniem SCollim®Mullfner
Pau Olivau¥stephen A. Ridley ¥6eorg Wichersi) WILEY

Android

Hacker’s
H‘al}dhook

BONUS SLIDES

These didn’t make the cut.

-

Background — “Open source’

* Android Open Source Project (AOSP)
* Kind of a misnomer :-/

* Google pushes their source after releases
Not true open source
Sets a bad example

« Downstream (OEMSs, etc) modify AOSP

 How many of you have checked out a copy?

