
Reversing P25
Radio Scanners
Let's beat a dead horse.

Super Quick Presentation
● Founder of an obscurely named infosec

company (see footer)
○ founded at the end of 2011
○ infosec dev, pentests
○ president, lead coder, chief janitor

■ I promise it will change soon ;)
● President of northsec competition (nsec.io)
● Not particularly awesome in anything
● Twitter idling @etrangeca

What it's all about
● Uniden BC296D
● Complete process from firmware update file

to code execution
● Toolset presentation
● AES over P25 still stand

○ for how long... ;)
● A nice adventure!

What is P25 anyway?
● Suite of standards for digital radio
● "Closed" open standards

○ You have to pay for the documentation
● Developed by a set of "trustworthy"

organisations
○ NSA
○ DoD

● Large scale adoption in North America
○ Public services
○ Polices forces

P25, isn't it more like
"molesting" a dead horse?
● Well... maybe.
● Osmocom OP25 did a very good job
● multiple p25 support in sdr radios
● some attacks are starting to appear.

● Sorry, it was fun to be on stage for 5 minutes
● See you soon...

P25, isn't it more like
"molesting" a dead horse?
● This talk is not about the protocol
● There's still some cool things to reverse

○ Trunking algorithms
○ Fast searching
○ Proprietary tweaks

● SDR's are not what we can call
○ Portable
○ User friendly

● Re-purposing devices is good for the
planet...

The Beast
● Uniden BC296D
● Released in 2002
● 9600bps APCO P25 Compatible
● Trunk Tracking ~14 types
● 25 mhz - 1.3ghz (not continuous)
● Many more features
● Still an amazing device
● http://wiki.radioreference.com/index.php/BC296D

http://wiki.radioreference.com/index.php/BC296D
http://wiki.radioreference.com/index.php/BC296D

The Beast (2)
● Uniden BCi96D
● "Optional" P25 daughter board
● P25 Protocol implementation
● Audio Decoding -> C4FM/CQPSK DSP

Why this model?
● Cheap P25 scanner (~350$ used)
● Firmware updates for both components

○ Radio
○ Daughter Board

● Old
○ ... so I don't care if I brick it.

Adventure time!

Hardware recon

Interesting Hardware bits
● Main radio

○ Renesas m16c/62P (m16c/60 serie)
■ 256k ROM
■ 20k RAM
■ 15-32 mhz
■ 16 bits I/O

○ User config is stored in eeprom (as pictured)
● Daughter board

○ Renesas m16c/62N (cheaper 62P version)
○ Texas instruments TMS 160, 320VC5410APGE

Now that we know that
● What should we do?

Firmware file analysis
● Let's look at the firmware update file

● Yay! Not binary.

Firmware file analysis
● Motorola S-Record

○ Nope IDA, intel s-record does not exists
● Stolen from Wikipedia

● Start code, one character, an S.
● Record type, one digit, 0 to 9, defining the type of the data field.
● Byte count, two hex digits, indicating the number of bytes (hex digit pairs) that follow in the rest of the record

(in the address, data and checksum fields).
● Address, four, six, or eight hex digits as determined by the record type for the memory location of the first

data byte. The address bytes are arranged in big endian format.
● Data, a sequence of 2n hex digits, for n bytes of the data.
● Checksum, two hex digits - the least significant byte of ones' complement of the sum of the values

represented by the two hex digit pairs for the byte count, address and data fields. For example:

 S1137AF0 0A0A0D0000000000000000000000000061

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Least_significant_byte
http://en.wikipedia.org/wiki/Ones%27_complement

Tool #1: pysrec
● https://github.com/gabtremblay/pysrec

● Motorola s-record analysis tool
● Validate checksum, rebuild checksum

○ In fact, it will replace the checksum automatically if
broken

● Show "ascii" representation
● Flip bytes (defeat the rot monster)
● Very bad python

https://github.com/gabtremblay/pysrec
https://github.com/gabtremblay/pysrec

Firmware file analysis
● Let's take a record in our file
● S2240A0120DC22C330DE22C330E321C330E322C3E0EC21C3E0EC22

C3E0F121C3E0F122C33011

● checksum(24+0A+01+20+...) != 11

● Something smells fishy
○ Record correctly indexed and addressed (S20A0120)
○ Still, the checksum fails.

● Maybe the firmware update tool can explain some things.

Firmware Updater

Firmware Updater
● ~2 MB of pure Visual Basic 6 clusterfsck
● Supports about 10 different scanner protocol

○ in a "Copy-Paste" fashion.
● Not "hard" to reverse

○ Simply unpleasant
● Turns out the firmware file is

"scramblencrypted"
● It leaves us with some choices

Firmware Updater
● Plan A: Buy the Renesas hardware to dump

the chip content
● (Edit) Plan A1: Buy a Die Datenkrake
● Plan B: Reverse the "scramblencryption"

algorithm
● Plan C: ...

Scramblencryption
● Firmware file is partly scrambled and partly

weakly encrypted
● Most data blocks uses a position rot(x)

scrambling algorithm
● Code blocks uses a rot(x) + XOR cipher
● Some parts are not scrambled at all

● There must be a least depressing way to
tackle this problem...

Plan C - As lazy as it gets
● The unscrambling is done at the updater

level before the actual firmware update
● The update protocol *should* be much

simpler to reverse
● In fact, it was!

Tool #2: BearMock

Tool #2: BearMock
● https://github.com/gabtremblay/Bearmock
● Fakes a BC296D (or a BCi96D)
● Use it with com0com or something similar
● Outputs a descrambled firmware in s-rec

format

https://github.com/gabtremblay/Bearmock
https://github.com/gabtremblay/Bearmock

Next
● We now have a descrambled s-record file

● Epic +- 2 year pause
○ Waiting for IDA to support Renesas m16c

● IDA 6.2: To the IDA cave!

Inside IDA

WUT!?

Inside IDA
● The cpu is supported but it's not common

renesas code
● Code analysis is broken :(
● Multiples entry points

○ Triggered by boot or keypress
● There must be an easy way to clean up...

Tool #3: m16clean
● https://github.com/gabtremblay/idabearclean

● (Very) Simple helper IDA python script to
help analysis

This is a blatant lie!
Consts are still not
supported, do them
manually!

Code finding
works well ;)

https://github.com/gabtremblay/idabearclean
https://github.com/gabtremblay/idabearclean

Firmware code layout

Firmware code structure
● System wide consts

○ Model number, version, regional tags
● Main radio program consts

○ Screen display, menus errors
● Smaller side programs are accessed
 at boot time (ex: hold l/o + 6)
● Note the updater aligned to the end of the

file so it's hard to corrupt while updating

The code is "signed"
● Some kind of checksum signature at runtime
● However you control the part of the code

which tests it.
○ Locate the corrupted firmware error message
○ find the caller
○ flip the jump.

● We can upload anything we want as long as
we don't corrupt the updater code at the end

Tool #4-5: Bearflash/BciFlash
● https://github.com/gabtremblay/bearflash
● https://github.com/gabtremblay/bciflash
● Tools to flash your custom firmware to the radio and the

daughter board
● Strongly inspired by the uniden updater (the two tools

are almost identical ;))
● Could be merged in a single one.

https://github.com/gabtremblay/bearflash
https://github.com/gabtremblay/bearflash
https://github.com/gabtremblay/bciflash
https://github.com/gabtremblay/bciflash

Some differences
● Some protocol difference
● The daughter board has a fixed 9600 bps update speed
● The main radio updater uses a weird "speed dance"

○ Connects at 9600
○ Sends "*SPD X" where X is a speed (115200)
○ Radio agrees or not
○ The port is closed
○ Updater speed is changed to the selected speed
○ Update can proceed.

Proof of concept
● Just try to flash some modifications to the radio
● I am a kind of a science guy
● Small tribute to the internet famous "eight equals d

minus" equation

Eight Equals D Minus Equation
● I am quite funny.

What about the newer models?
● BCD346T, BCD396XT, Home Patrol
● They still all uses s-record update files
● Files are UNSCRAMBLED
● Can't tell for the signature
● Firmware files are not distributed, they are fetched at

flash time
● 396XT and Homepatrol have .net updaters
● I strongly suggest you "dotpeek" them

○ They had to put the ftp passwords somewhere ;)
○ Maybe you want to save 100$ on the extreme

upgrade...

Questions

?

