
Reconstructing Gapz:

Position-Independent Code Analysis

Problem

Aleksandr Matrosov Eugene Rodionov

@matrosov @vxradius

Outline of The Presentation

 Gapz: dropper
 exploprer.exe code injection trick

 Gapz: bootkit
 Classification of modern bootkits

 New VBR bootkit technique

 Gapz: payload
 Hidden file system implementation

 Disk hooks and Hooking engine

 NDIS, TCP/IP stack implementation, HTTP protocol

 C&C communications

 Gapz: forensic approaches

 HexRaysCodeXplorer

Gapz: dropper

PowerLoader Builder (since September 2012)

PowerLoader Builder (since September 2012)

Gapz Dropper Execution Stages

Injecting into
explorer.exe
(entry point)

Local Privilege
Escalation

(icmnf)

Infecting the
system
(isyspf)

stage 1 stage 2

Bypassing HIPS with eplorer.exe Code Injection

opens shared sections from
\\BaseNamedObjects mapped
into explorer.exe and writes
shellcode

Bypassing HIPS with eplorer.exe Code Injection

The dropper searches for the
window “Shell_TrayWnd”

Bypassing HIPS with eplorer.exe Code Injection

The dropper calls GetWindowLong() so as to get the address of
the routine related to the “Shell_TrayWnd” window handler

The dropper calls SetWindowLong() to modify “Shell_TrayWnd”
window-related data

Bypass HIPS with eplorer.exe Code Injection

calls SendNotifyMessage() to trigger shellcode execution in
explorer.exe address space

arbitrary code execution in WndProc() of “Shell_TrayWnd”:

Triggering Shellcode Execution

SendNotifyMessage() transfers control to the address pointed
to address points to the KiUserApcDispatcher() routine

Triggering Shellcode Execution

uses ROP-gadgets to jump into shellcode memory region and
execute shellcode

Triggering Shellcode Execution

uses ROP-gadgets to jump into shellcode memory region and
execute shellcode

Triggering Shellcode Execution

Gapz: bootkit

Modern Bootkits Classification (BIOS based)

Bootkits

MBR VBR/IPL

MBR Code
modification

Partition Table
modification

IPL Code
modification

BIOS Parameter
Block modification

TDL4 Olmasco Rovnix Gapz

Gapz Bootkit Overview

Module Name Hooked Routine

ntldr BlLoadBootDrivers

bootmgr Archx86TransferTo32BitApplicationAsm

winload.exe OslArchtransferToKernel

ntoskrnl.exe IoInitSystem

Gapz bootkit features:
 hooks int 13h handler
 patches modules: ntldr, bootmgr, winload.exe, kernel

image to survive processor execution mode switching
and kernel-mode code integrity checks

Gapz Bootkit Workflow

Hook
Archx86TransferTo32BitApplicationAsm

in bootmgr

Hook
OslArchTransferToKernel

in winload.exe

Hook
IoInitSystem

in kernel image

Int 13h handler
is hooked

Bootmgr loads
winload.exe

Winload.exe loads
kernel image

Bootkit loads malicious
kernel-mode code and runs
it in a new system thread

Gapz VBR Bootkit

Gapz VBR bootkit features:
 Relies on Microsoft Windows VBR layout
 The infections results in modifying only 4 bytes of VBR
 The patched bytes might differ on various installations

jmp
BIOS

Parameter
Block (BPB)

VBR code Text Strings
0x55
0xAA

0x000 0x003 0x054 0x19C 0x1FE 0x200

transfer control

Gapz BPB Layout

struct BIOS_PARAMETER_BLOCK
{

WORD BytesPerSector;
BYTE SecPerCluster;
WORD ReservedSectors;
BYTE Reserved[5];
BYTE MediaDescriptorID;
WORD Reserved2;
WORD SectorsPerTrack;
WORD NumberOfHeads;
DWORD HiddenSectors;
DWORD Reserved3[2];
LONGLONG TotalSectors;
LONGLONG StartingCluster;
LONGLONG MFTMirrStartingCluster;
DWORD ClustersPerMFTRecord;
DWORD ClustersPerIndexBuffer;
LONGLONG VolumeSerialNumber;
DWORD Reserved4;

};

Gapz BPB Layout

struct BIOS_PARAMETER_BLOCK
{

WORD BytesPerSector;
BYTE SecPerCluster;
WORD ReservedSectors;
BYTE Reserved[5];
BYTE MediaDescriptorID;
WORD Reserved2;
WORD SectorsPerTrack;
WORD NumberOfHeads;
DWORD HiddenSectors;
DWORD Reserved3[2];
LONGLONG TotalSectors;
LONGLONG StartingCluster;
LONGLONG MFTMirrStartingCluster;
DWORD ClustersPerMFTRecord;
DWORD ClustersPerIndexBuffer;
LONGLONG VolumeSerialNumber;
DWORD Reserved4;

};

Gapz BPB Modification

MBR NTFS File SystemIPLVBR

NTFS Volume
0x200 0x1E00

Number of
 “Hidden Sectors”

MBR NTFS File SystemIPL
Infected

VBR

NTFS Volume
0x200 0x1E00

Hard Drive

Modified value of number of “Hidden Sectors”

Bootkit

before infection

after infection

Gapz: rootkit

Gapz Rootkit Overview

Gapz rootkit functionality is implemented as
position independent kernel-mode code for
both x86 and x64 platforms

Gapz rootkit capabilities:
 Hidden storage implementation
 User-mode payload injection
 Covert network communication channel
 C&C server authentication mechanism

Gapz Rootkit Overview

Gapz rootkit functionality is implemented as
position independent kernel-mode code for
both x86 and x64 platforms

Gapz rootkit capabilities:
 Hidden storage implementation
 User-mode payload injection
 Covert network communication channel
 C&C server authentication mechanism

Gapz Kernel-mode Code Organization

struct GAPZ_BASIC_BLOCK_HEADER

{

// A constant which is used to obtain addresses

// of the routines implemented in the block

unsigned int ProcBase;

unsigned int Reserved[2];

// Offset to the next block

unsigned int NextBlockOffset;

// Offset of the routine performing block initialization

unsigned int BlockInitialization;

// Offset to configuration information

// from the end of the kernel-mode module

// valid only for the first block

unsigned int CfgOffset;

// Set to zeroes

unsigned int Reserved1[2];

};

Gapz Kernel-mode Code Blocks

Block # Implemented Functionality

1 General API, gathering information on the hard drives, CRT string routines and etc.

2 Cryptographic library: RC4, MD5, SHA1, AES, BASE64 and etc.

3 Hooking engine, disassembler engine.

4 Hidden Storage implementation.

5 Hard disk driver hooks, self-defense.

6 Payload manager.

7 Payload injector into processes’ user-mode address space.

8 Network communication: Data link layer.

9 Network communication: Transport layer.

10 Network communication: Protocol layer.

11 Payload communication interface.

12 Main routine.

Gapz Hidden Storage Implementation

 Gapz implements modified FAT32 hidden volume
based on FullFat project
 Length of file name in FAT directory entry is 32 bytes

 The hidden volume is stored in the file with name:
“\??\C:\System Volume Information\{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}”

 The contents of the volume is encrypted with
AES-256 in CBC mode:
 The sector LBA is used as IV

Gapz Hidden Storage Implementation

 Gapz implements modified FAT32 hidden volume
based on FullFat project
 Length of file name in FAT directory entry is 32 bytes

 The hidden volume is stored in the file with name:
“\??\C:\System Volume Information\{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}”

 The contents of the volume is encrypted with
AES-256 in CBC mode:
 The sector LBA is used as IV

Gapz Hidden Storage Implementation

 Gapz implements modified FAT32 hidden volume
based on FullFat project
 Length of file name in FAT directory entry is 32 bytes

 The hidden volume is stored in the file with name:
“\??\C:\System Volume Information\{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}”

 The contents of the volume is encrypted with
AES-256 in CBC mode:
 The sector LBA is used as IV

Gapz Crypto Library Implementation

 Gapz crypto library functionality:
 Hashing: MD5, SHA1
 Symmetric ciphers: RC4, AES
 Asymmetric cipher: ECC

Gapz Self-Defence Mechanisms

 Gapz hooks IRP_MJ_INTERNAL_DEVICE_CONTROL and
IRP_MJ_DEVICE_CONTROL handlers to monitor:

 IOCTL_SCSI_PASS_THROUGH
 IOCTL_SCSI_PASS_THROUGH_DIRECT
 IOCTL_ATA_PASS_THROUGH
 IOCTL_ATA_PASS_THROUGH_DIRECT

 Gapz protects:

 MBR/VBR from being read/overwritten
 its image on the hard drive from being overwritten

Gapz Hooking Engine Implementation

 Gapz hooking engine is based on the ”Hacker
Disassembler Engine”

 Tries to avoid patching the very first bytes of the routine
being hooked (nop; mov edi, edi; etc.):

Gapz Hooking Engine Implementation

 Gapz hooking engine is based on the ”Hacker
Disassembler Engine”

 Tries to avoid patching the very first bytes of the routine
being hooked (nop; mov edi, edi; etc.):

Gapz Code Injection Functionality

Allocate
memory buffer

in target process
address space

Write payload
and loader code

into allocated
buffer

Create remote
thread in the

target process

Loader code

DLL loader
(load/unload DLL modules)

Command executer
(call specific handler in DLL payload

and pass necessary parameters)

EXE loader 1
(run EXE modules)

EXE loader 2
(run EXE modules)

Gapz Payload Loader Code: DLL Loader & Command Executer

Map image into address
space

Fix relocations and
initialize IAT

Load or unload?

Execute export #1

Execute export #2

Release image memory

unload load

Gapz Payload Loader Code: EXE Loaders

Drop payload image into
%TEMP% directory

Execute CreateProcessW
API

EXE Loader 1
Create legitimate suspended

process
(via CreateProcessAsUser)

Overwrite process image with the
malicious one

Set process thread context
according to malicious image

Resume process thread

EXE Loader 2

Gapz Network Protocol Implementation

svchost.exe

overlord32(64).dll

Win32/Gapz
kernel-mode module

TCP/IP protocol stack
implementation

Message to be sent to
C&C Server

user mode

kernel mode

C&C Server

Send using Win32
socket implementation

Send directly using
NDIS miniport driver

Gapz Network Protocol Architecture

Gapz implementation OSI Model

HTTP protocol
(block #10)

TCP/IP protocol
(block #9)

NDIS miniport wrapper
(block #8)

Application/Presentation
Layer

Network/Transport
Layer

Data Link Layer

Gapz Network Protocol Implementation: NDIS

Gapz network protocol stack relies on miniport adapter driver:

Miniport adapter driver

Intermediate driver

Protocol driver
(tcpip.sys)

Filter driver
..

.
..

.
..

.
At the level of

protocol or intermediate
drivers Win32/Gapz’s network

packet is “invisible”

Win32/Gapz communicates
directly to miniport adapter

Win32/Gapz
Network
packet

Gapz C&C Communication Protocol

 Gapz communicates to C&C servers over HTTP protocol

 Capabilities of the protocol:

 00 - download payload
 01 - send bot information to C&C
 02 - request payload download information
 03 - report on running payload
 04 - update payload download URL

 The requests corresponding to commands 0x01, 0x02 and 0x03 are
performed by the POST method of the HTTP protocol.

Gapz C&C Communication Protocol: HTTP Request

Message HeaderHTTP Header Request specific data

HTTP header HTTP body

struct MESSAGE_HEADER

{

// Output of PRNG

unsigned char random[128];

// a DWORD from configuration file

unsigned int reserved;

// A binary string which is used to

authenticate C&C servers

unsigned char auth_str[64];

};

Gapz C&C Communication Protocol: HTTP Request

Message HeaderHTTP Header Request specific data

HTTP header HTTP body

struct MESSAGE_HEADER

{

// Output of PRNG

unsigned char random[128];

// a DWORD from configuration file

unsigned int reserved;

// A binary string which is used to

authenticate C&C servers

unsigned char auth_str[64];

};

Gapz C&C Communication Protocol: C&C Reply

Encrypted rc4
key K1

HTTP Header
Reply specific

data

HTTP message header HTTP message body

Authentication
string

rc4 encrypted data with key k1

Decrypt key K1

Decrypt authentication string and reply-specific
data using key K1

Check authentication string

Process reply-specific
data

Reject reply-specific
data

matchdoesn’t match

Gapz C&C Communication Protocol: URLs

Gapz C&C Communication Protocol: URLs

Gapz User-mode Payload Functionality

The module
overlord32(64).dll
is essential part of
the Gapz bootkit

Overlord32(64).dll
is injected into

svchost.exe
process

Overlord32(64).dll
dispatches the
requests from
kernel-mode

Cmd # Command Description

0
gather information about all the network adapters installed in the system and their
properties and send it to kernel-mode module

1 gather information on the presence of particular software in the system

2 check internet connection by trying to reach update.microsoft.com

3 send & receive data from a remote host using Windows sockets

4 get the system time from time.windows.com

5 get the host IP address given its domain name (via Win32 API gethostbyname)

6
get Windows shell (by means of querying “Shell” value of
“Software\Microsoft\Windows NT\CurrentVersion\Winlogon” registry key)

Gapz User-mode Payload Interface

Gapz impersonates the handler of the payload requests in the null.sys
driver to communicate with the injected payload:

Win32/Gapz module

Driver\Null
DRIVER_OBJECT

Driver\Null
Driver Image

IRP_MJ_DEVICE_CONTROL

DriverUnload = NULL
DriverUnload rotuine

IRP_MJ_DEVICE_CONTROL
handler

Driver\Null
DRIVER_OBJECT

Driver\Null
Driver Image

IRP_MJ_DEVICE_CONTROL

DriverUnload DriverUnload rotuine

IRP_MJ_DEVICE_CONTROL
handler

Gapz’s hook

jmp gapz_hook

Payload
interface

before patching after patching

Gapz User-mode Payload Interface

Gapz impersonates the handler of the payload requests in the null.sys
driver to communicate with the injected payload:

Win32/Gapz module

Driver\Null
DRIVER_OBJECT

Driver\Null
Driver Image

IRP_MJ_DEVICE_CONTROL

DriverUnload = NULL
DriverUnload rotuine

IRP_MJ_DEVICE_CONTROL
handler

Driver\Null
DRIVER_OBJECT

Driver\Null
Driver Image

IRP_MJ_DEVICE_CONTROL

DriverUnload DriverUnload rotuine

IRP_MJ_DEVICE_CONTROL
handler

Gapz’s hook

jmp gapz_hook

Payload
interface

before patching after patching

Modern bootkits comparison

Functionality Gapz
Olmarik

(TDL4)

Rovnix

(Cidox)

Goblin

(XPAJ)

Olmasco

(MaxSS)

MBR modification

VBR modification

Hidden file system

type FAT32 custom
FAT16

modification

custom

(TDL4 based)
custom

Crypto

implementation

AES-256,

RC4, MD5,

SHA1, ECC

XOR/RC4
Custom

(XOR+ROL)

RC6

modification

Compression

algorithm
 aPlib aPlib

Custom TCP/IP

network stack

implementation

Gapz: forensic approaches

Hidden File System Reader

Hidden File System Reader

Hidden File System Reader

HiddenFsReader: Free public forensic tool

http://download.eset.com/special/ESETHfsReader.exe

http://download.eset.com/special/ESETHfsReader.exe

C++ code reconstruction

problems

C++ Code Reconstruction Problems

 Object identification
 Type reconstruction

 Class layout reconstruction
 Identify constructors/destructors

 Identify class members

 Local/global type reconstruction

 Associate object with exact method calls

 RTTI reconstruction
 Vftable reconstruction

 Associate vftable object with exact object

 Class hierarchy reconstruction

C++ Code Reconstruction Problems

Class A

vfPtr

a1()

a2()
A::vfTable

meta

A::a1()

A::a2()

RTTI Object
Locator

signature

pTypeDescriptor

pClassDescriptor

C++ Code Reconstruction Problems

Identify Smart Pointer Structure

Identify Exact Virtual Function Call in vtable

Identify Exact Virtual Function Call in vtable

Identify Exact Virtual Function Call in vtable

Identify Objects Constructors

Identify Objects Constructors

Using Hex-Rays Decompiler

 Identifying constructors/destructors
 Usually follow memory allocation

 The pointer to object is passed in ecx (sometimes in other registers)

 Reconstructing object’s attributes
 Creating custom type in “Local Types” for an object

 Analyzing object’s methods
 Creating custom type in “Local Types” for a table of virtual routines

Using Hex-Rays Decompiler

 Identifying constructors/destructors
 Usually follow memory allocation

 The pointer to object is passed in ecx (sometimes in other registers)

 Reconstructing object’s attributes
 Creating custom type in “Local Types” for an object

 Analyzing object’s methods
 Creating custom type in “Local Types” for a table of virtual routines

Reconstructing Object’s Methods

Reconstructing Object’s Methods

Reconstructing Object’s Methods

HexRaysCodeXplorer

HexRaysCodeXplorer Features

Hex-Rays decompiler plugin

 The plugin was designed to facilitate static
analysis of:

 object oriented code

 position independent code

 The plugin allows to:

 navigate through decompiled virtual methods

 partially reconstruct object type

Hex-Rays Decompiler Plugin SDK

At the heart of the decompiler lies ctree structure:

 syntax tree structure

 consists of citem_t objects

 there are 9 maturity levels of the ctree structure

Hex-Rays Decompiler Plugin SDK

At the heart of the decompiler lies ctree structure:

 syntax tree structure

 consists of citem_t objects

 there are 9 maturity levels of the ctree structure

Hex-Rays Decompiler Plugin SDK

 Type citem_t is a base class for:
 cexpr_t – expression type

 cinsn_t – statement type

 Expressions have attached type information

 Statements include:
 block, if, for, while, do, switch, return, goto, asm

 Hex-Rays provides iterators for traversing the citem_t
objects within ctree structure:
 ctree_visitor_t

 ctree_parentee_t

citem_t

cexpr_t cinsn_t

Hex-Rays Decompiler Plugin SDK

 Type citem_t is a base class for:
 cexpr_t – expression type

 cinsn_t – statement type

 Expressions have attached type information

 Statements include:
 block, if, for, while, do, switch, return, goto, asm

 Hex-Rays provides iterators for traversing the citem_t
objects within ctree structure:
 ctree_visitor_t

 ctree_parentee_t

citem_t

cexpr_t cinsn_t

HexRaysCodeXplorer: Gapz Position Independent Code

HexRaysCodeXplorer: Virtual Methods

 The IDA’s “Local Types” is used to represent object type

 Hex-Rays decompiler plugin is used to navigate through

the virtual methods

HexRaysCodeXplorer: Virtual Methods

 Hex-Rays decompiler plugin is used to navigate through

the virtual methods

HexRaysCodeXplorer: Virtual Methods

DEMO

HexRaysCodeXplorer: Object Type REconstruction

Hex-Rays’s ctree structure may be used to

partially reconstruct object type based on its

initialization routine (constructor)

 Input:
 pointer to the object instance

 object initialization routine entry point

Output:
 C structure-like object representation

HexRaysCodeXplorer: Object Type REconstruction

Hex-Rays’s ctree structure may be used to

partially reconstruct object type based on its

initialization routine (constructor)

 Input:
 pointer to the object instance

 object initialization routine entry point

Output:
 C structure-like object representation

HexRaysCodeXplorer: Object Type REconstruction

 citem_t objects to monitor:
 memptr

 idx

 memref

 call (LOBYTE, etc.)

DEMO

http://REhints.com

Follow us on twitter and github:

 @REhints

 https://github.com/REhints

Beta testing will be open in July

 send request to info@REhints.com

References

 Gapz and Redyms droppers based on Power Loader code
http://www.welivesecurity.com/2013/03/19/gapz-and-redyms-droppers-based-on-power-loader-code/

 Mind the Gapz: The most complex bootkit ever analyzed?
http://www.welivesecurity.com/wp-content/uploads/2013/04/gapz-bootkit-whitepaper.pdf

 Modern Bootkit Trends: Bypassing Kernel-Mode Signing Policy
http://go.eset.com/us/resources/white-papers/Rodionov-Matrosov.pdf

 Defeating Anti-Forensics in Contemporary Complex Threats
http://go.eset.com/us/resources/white-papers/Matrosov_Rodionov_VB2012.pdf

 Bootkit Threats: In-Depth Reverse Engineering & Defense
http://www.welivesecurity.com/wp-content/media_files/REcon2012.pdf

http://www.welivesecurity.com/2013/03/19/gapz-and-redyms-droppers-based-on-power-loader-code/
http://www.welivesecurity.com/wp-content/uploads/2013/04/gapz-bootkit-whitepaper.pdf
http://go.eset.com/us/resources/white-papers/Rodionov-Matrosov.pdf
http://go.eset.com/us/resources/white-papers/Matrosov_Rodionov_VB2012.pdf
http://www.welivesecurity.com/wp-content/media_files/REcon2012.pdf

Thank you for your attention!

Aleksandr Matrosov
@matrosov

Eugene Rodionov
@vxradius

