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The Point of This Keynote
● Demonstrate the utility of academic program 

analysis towards solving real-world reverse 
engineering problems



  

Definitions
● Syntactic methods consider only the encoding 

rather than the meaning of a given object, e.g., 
sequences of machine-code bytes or assembly 
language instructions, perhaps with wildcards

● Semantic methods consider the meaning of 
the object, e.g., the effects of one or more 
instructions



  

Syntax vs. Semantics

● Syntactic methods 
● tend to be fast, but are limited in power
● work well in some cases, and poorly in others
● are incapable of solving certain types of problems

● Semantic methods 
● tend to be slower, but are more powerful
● some analyses might produce approximate 

information (i.e. “maybe” instead of “yes” or “no”)



  

Syntax-Based Methods

● Are employed in cases such as
● Packer entrypoint signatures
● FLIRT signatures
● Methods to locate functionality e.g. FindCrypt
● Anti-virus byte-level signatures
● Deobfuscation of pattern-obfuscated code



  

Syntactic Methods:  Strengths
● Syntactic methods work well when the 

essential feature of the object lives in a 
restricted syntactic universe
● FLIRT signatures in the case where the library is 

actually statically-distributed and not recompiled
● Packer EP signatures when the packer always 

generates the same entrypoint
● There is only one instance of some malicious 

software
● Obfuscators with a limited vocabulary



  

FLIRT Signatures:  Good Scenario
● Library statically-linked, not recompiled



  

Syntactic Methods:  Weaknesses

● They do not work well when there are a variety 
of ways to encode the same property
● FLIRT signatures when the library is recompiled
● Packer EP signatures when the packer generates 

the EP polymorphically
● AV signatures for polymorphic malware, or malware 

distributed in source form
● Complex obfuscators

● Making many signatures to account for the 
variation is not a good solution either



  

FLIRT Signatures:  Bad Scenario
● Library was recompiled



  

Semantics-Based Methods

● Numerous applications in RE, including:
● Automated key generator generation
● Semi-generic deobfuscation
● Automated bug discovery
● Switch-as-binary-search case recovery
● Stack tracking

● This keynote attacks these problems via abstract interpretation and 
theorem proving



  

Exposing the Semantics

The right-hand side is the Intermediate 
Language translation (or IR).



  

Design of a Semantics Translator
1.Programming language-theoretic decisions

● Tree-based?  Three-address form?
2.Which behaviors to model?

● Exceptions? Low-level details e.g. segmentation?
3.How to model those behaviors?

● Sign flag:  (result & 0x80000000), or (result < 0)?
● Carry/overflow flags:  model them as bit hacks a la 

Bochs, or as conditionals a la Relational REIL?
4.How to ensure correctness?
● Easier for the programmer != better results



  

Act I
Old-School Program Analysis

Abstract Interpretation



  

Abstract Interpretation:  Signs 
Analysis

● AI is complicated, but the basic ideas are not
● Ex: determine each variable's sign at each point

● Replaced the 
● concrete state with an abstract state
● concrete semantics with an abstract semantics



  

Concept:  Abstract the State
● Different abstract interpretations use different 

abstract states.
● For the signs analysis, each 

variable could be
● Unknown: either positive or 

negative (+/-)
● Positive: x >= 0 (0+)
● Negative: x <= 0 (0-)
● Zero (0)
● Uninitialized (?)

● Ignore all other information, e.g., the actual 
values of variables.



  

Concept:  Abstract the Semantics (*)
● Abstract multiplication follows the well-known 

“rule of signs” from grade school
● A positive times a positive is positive
● A negative times a negative is positive
● A negative times a positive is negative
● Note: these remarks refer to mathematical integers; 

machine integers are subject to overflow

* ? 0 0+ 0- +/-
? +/- 0 +/- +/- +/-
0 0 0 0 0 0
0+ +/- 0 0+ 0- +/-
0- +/- 0 0- 0+ +/-
+/- +/- 0 +/- +/- +/-



  

Concept:  Abstract the Semantics (+)
● Positive + positive = positive.
● Negative + negative = negative.
● Negative + positive = unknown:

● -5 + 5.  Concretely, the result is 0.
● -6 + 5.  Concretely, the result is -1.
● -5 + 6.  Concretely, the result is 1.

+ ? 0 0+ 0- +/-
? +/- +/- +/- +/- +/-
0 +/- 0 0+ 0- +/-
0+ +/- 0+ 0+ +/- +/-
0- +/- 0 0- 0+ +/-
+/- +/- 0 +/- +/- +/-



  

Example:  Sparse Switch Table 
Recovery

● Use abstract interpretation to infer case labels 
for switches compiled via binary search.

● Abstract domain:  intervals.



  

Switch Tables: Contiguous, Indexed



  

Switch Tables:  Sparsely-Populated

Switch cases are sparsely-distributed.

Cannot implement efficiently with a table.

One option is to replace the construct with 
a series of if-statements.

This works, but takes O(N) time.

Instead, compilers generate decision trees 
that take O(log(N)) time, as shown on the 
next slide.



  

Decision Trees for Sparse Switches



  

Assembly Language Reification

Additional, slight complication:  red instructions modify EAX 
throughout the decision tree.



  

Assembly Language Reification, 
Graphical



  

The Abstraction
● Insight:  we care about what range of values 

leads to a terminal case
● Data abstraction:  Intervals [l,u], where l <= u
● Insight:  construct implemented via sub, dec,  

cmp instructions – all are actually subtractions – 
and conditional branches

● Semantics abstraction:  Preservation of 
subtraction, bifurcation upon branching



  

Analysis Results

Beginning with no information about arg_0, each path 
through the decision tree induces a constraint upon its 
range of possible values, with single values or simple 

ranges at case labels.



  

Example:  Generic Deobfuscation
● Use abstract interpretation to remove 

superfluous basic blocks from control flow 
graphs.

● Abstract domain:  three-valued bitvectors.



  

Anti-Tracing Control Obfuscation
● This code is an anti-

tracing check.  First 
it pushes the flags, 
rotates the trap flag 
into the zero flag 
position, restores 
the flags, and then 
jumps if the zero 
flag (i.e., the 
previous trap flag) 
is set.  

● The 90mb binary 
contains 10k-100k 
of these checks.



  

Obfuscated Control Flow Graph

Left:  control flow graph with obfuscation of the type on the previous slide.
Right:  the same control flow graph with the bogus jumps removed by the analysis 
that we are about to present.



  

A Semantic Pattern for This Check
● A bit in a quantity (e.g., the TF bit resulting from 

a pushf instruction) is declared to be a constant 
(e.g., zero), and then the bit is used in further 
manipulations of that quantity.
● Abstractly similar to constant propagation, except 

instead of entire quantities, we work on the bit level.



  

Problem:  Unknown Bits
● We only know that certain bits are constant; 

how do we handle non-constant ones?
● What happens if we …

● and, adc, add, cmp, dec, div, idiv, imul, inc, mul, 
neg, not, or, rcl, rcr, rol, ror, sar, shl, shr, sbb, setcc, 
sub, test, xor

● … quantities that contain unknown bits?

? ? ? 1 ? ? ? 0
* 1 ? ? ? ? 1 ? ?
= ? ? ? ? ? ? ? ?



  

Abstract Domain:  Three-Valued 
Bitvectors

● Abstract bits as having three values instead of 
two:  0, 1, ½ (½ = unknown: could be 0 or 1)

● Model registers as vectors of three-valued bits
● Model memory as arrays of three-valued bytes



  

Abstract Semantics:  AND
● Standard concrete semantics for AND:
● What happens when we introduce ½ bits?
● ½ AND 0 = 0 AND ½ = 0 (0 AND anything = 0)
● ½ AND 1 = 1 AND ½ = …

● If ½ = 0, then 0 AND 1 = 0
● If ½ = 1, then 1 AND 1 = 1
● Conflictory, therefore ½ AND 1 = ½. 
● Similarly ½ AND ½ = ½.
● Final three-valued truth table:

AND 0 1
0 0 0
1 0 1

AND 0 ½ 1
0 0 0 0
½ 0 ½ ½
1 0 ½ 1



  

Abstract Semantics: Bitwise Operators

AND 0 ½ 1

0 0 0 0

½ 0 ½ ½

1 0 ½ 1

OR 0 ½ 1

0 0 ½ 1

½ ½ ½ 1

1 1 1 1

XOR 0 ½ 1

0 0 ½ 1

½ ½ ½ ½

1 1 ½ 0

NOT 0 ½ 1
1 ½ 0

These operators follow the same pattern as the derivation on the 
previous slide, and work exactly how you would expect



  

Abstract Semantics:  Shift Operators

½ 0 1 ½ 0 1 ½ 0 Some three-valued bitvector, call it BV

0 ½ 0 1 ½ 0 1 ½ BV SHR 1

0 1 ½ 0 1 ½ 0 0 BV SHL 1

½ ½ 0 1 ½ 0 1 ½ BV SAR 1

Rotation operators are decomposed into shifts and 
ORs, so they are covered as well.



  

Concrete Semantics:  Addition
● How addition C = A + B works on a real processor.
● A[i],B[i],C[i] means the bit at position i.

● At each bit position, there are 23 = 8 possibilities 
for A[i], B[i], and the carry-in bit.  The result is C[i] 
and the carry-out bit.

Carry-Out 0 1 1 1 1 0 0 0
A[i] 0 1 0 1 1 0 1 0
B[i] 0 1 1 0 1 1 0 0
Carry-In 1 1 1 1 0 0 0 0
C[i] 1 1 0 0 0 1 1 0



  

Abstract Semantics:  Addition
● Abstractly, A[i], B[i], and the carry-in are three-

valued, so there are 33 possibilities at each 
position.

● The derivation is straightforward but tedious.
● Notice that the system automatically determines 

that the sum of two N-bit integers is at most 
N+1 bits.

Carry-Out 0 0 0 ½ ½ ½
A[i] 0 0 0 ½ ½ ½
B[i] 0 0 0 ½ ½ ½
Carry-In 0 0 ½ ½ ½ 0
Result 0 0 ½ ½ ½ ½



  

Abstract Semantics:  Negation, 
Subtraction

● Neg(x) = Not(x)+1
● Sub(x,y) = Add(x,~y) where the initial carry-in 

for the addition is set to one instead of zero.
● Therefore, these operators can be implemented 

based upon what we presented already.



  

Unsigned Multiplication
● Consider B = A * 0x123
● 0x123 = 0001 0010 0011 = 28 + 25 + 21 + 20

● B = A * (28 + 25 + 21 + 20) (substitution)

● B = A * 28 + A * 25 + A * 21 + A * 20 (distributivity: * over +)

● B = (A << 8) + (A << 5) + (A << 1) + (A << 0) 
(definition of <<)

● Whence unsigned multiplication reduces to 
previously-solved problems

● Signed multiplication is trickier, but similar



  

Abstract Semantics:  Conditionals
● For equality, if any concrete bits mismatch, then 

A != B is true, and A == B is false. 

● For A < B, compute B-A and take the carry-out 
as the result

● For A <= B, compute (A < B) | (A == B).

A ½ 1 ½ ½ ½ 0 ½ ½
B ½ 0 ½ ½ ½ 0 ½ ½



  

Deobfuscation Procedure
● Generate control flow graph
1.Apply the analysis to each basic block
2.If any conditional jump becomes unconditional, 

remove the false edge from the graph
3.Prune all vertices with no incoming edges (DFS)
4.Merge all vertices with a sole successor, whose 

successor has a sole predecessor
5.Iterate back to #1 until the graph stops changing
● Stupid algorithm, could be majorly improved



  

Progressive Deobfuscation

Original graph: 232 
vertices

Deobfuscation round #1: five 
vertices

Deobfuscation round #2, 
final:  one vertex



  

Example:  Tracking ESP
● We explore and generalize Ilfak's work on stack 

tracking.
● Abstract domains:  convex polyhedra and 

friends in the relational domain family.



  

Concept:  Relational Abstractions
● So far, the analyses treated variables 

separately; we now consider analyses that treat 
variables in combination

● Below: two-dimensional convex polyhedra 
induced by linear inequalities over x and y

y < x y < 10 - x y < x && y < 10 - x && y > 0



  

Stack Tracking, Ilfak 2006
● Want to know the differential of ESP between 

function begin and every point in the function.
● Problem:  indirect calls with unknown calling 

conventions.



  

Stack Tracking
● Generate a convex 

polyhedron, defined by:
● Two variables for every 

block:  in_esp, out_esp.
● One equality for each initial 

and terminal block.
● One equality for each edge 

(#i,#j): out_esp_i = in_esp_j
● One inequality (not shown) 

for each block #n, relating 
in_esp_n to out_esp_n, 
based on the semantics 
(ESP modifications: calls, 
pushes, pops) of the block.

● Solve the equation system 
for an assignment to the  
ESP-related variables.



  

Stack Tracking:  Inequalities

This block pushes 6 DWORDs (24 bytes) on the stack, and it is unknown whether the call 
removes them.  Therefore, the inequality generated for this block is:

out_esp_5 - in_esp_5 <= 24



  

Alternative Formulations
● Ilfak's solution uses polyhedra, which is 

potentially computationally expensive
● Note: all equations are of the form v

i
 – v

j
 <= c

ij
, 

which can be solved in O(|V|*|E|) time with 
Bellman-Ford (or other PTIME solutions)

Figure stolen from Antoine Mine's Ph.D. thesis due to lack of time.  Sorry.



  

Random Concept:  Reduced Product
● Instead of performing analyses separately, 

allow them to interact => increased precision
● Suppose we perform several analyses, and the 

results for variable x at some point are:
● x = [-10,6] (Interval)
● x = 0+ (Sign)
● x = Odd (Parity)

● Using the other domains, we can refine the 
interval abstraction:
● Reduced product of ([-10,6],0+) = ([0,6],0+)
● Reduced product of ([0,6],Odd) = ([1,5],Odd)



  

Act II
New-School Program Analysis

SMT Solving



  

Concept:  Input Crafting via 
Theorem Proving

● Idea:  convert portions of code into logical 
formulas, and use mathematically precise 
techniques to prove properties about them

● Example:  what value must EAX have at the 
beginning of this snippet in order for EAX to be 
0x12345678 after the snippet executes?



  

IR to SMT Formula

Part of the IR translation of the x86 snippet 
given on the previous slide.

A slightly simplified (read: incorrect) SMT 
QF_EUFBV translation of the IR from the left.



  

Ask a Question
● Given the SMT formula, initial EAX unspecified, is 

it possible that this postcondition is true?
● assert(T175d == 0x12345678); (T175d is final EAX)

● The SMT solver outputs a 
model that satisfies the 
constraints.

● The first red line says that the 
formula is satisfiable, i.e., the 
answer is yes.

● The final red line says that the 
initial value of EAX must be 
1450744509, or 0x56789ABD.



  

Automated Key Generator Generation
● As before, generate an 

execution trace (statically) 
and convert to IR.  Then 
convert the IR to an SMT 
formula.

● Precondition:  
a_ActivationCode[0] = X && 
a_ActivationCode[1] = Y && 
a_ActivationCode[2] = Z … 
where 
X = regcode[0], 
Y = regcode[1], 
Z = regcode[2], ...

● Postcondition:  
String_derived[0] = '0' && 
String_derived[1] = 'h' && 
String_derived[2] = 'o' ...



  

Example:  Equivalence Checking for 
Error Discovery

● We employ a theorem prover (SMT solver) 
towards the problem of finding situations in 
which virtualization obfuscators produce 
incorrect translations of the input.



  

Concept:  Equivalence Checking

Iterative bit-tests Sequential ternary operator

● Population counting, naïvely.  Count the 
number of one-bits set.



  

Population Count via Bit Hacks

● Looks crazy; the next slide 
will demonstrate how this 
works



  

8-Bit Population Count via Bit Hacks

a b c d e f g h
& 0 1 0 1 0 1 0 1

0 b 0 d 0 f 0 h

a b c d e f g h
& 1 0 1 0 1 0 1 0
>>1 0 a 0 c 0 e 0 g

0 a 0 c 0 e 0 g
+ 0 b 0 d 0 f 0 h
= i i j j k k l l

Where
ii = a+b
jj = c+d
kk = e+f
ll = g+h

i i j j k k l l
& 1 1 0 0 1 1 0 0
>>2 0 0 i i 0 0 k k

0 0 i i 0 0 k k
+ 0 0 j j 0 0 l l
= m m m m n n n n

Where
mmmm = ii+jj
nnnn = kk+ll

m m m m n n n n
& 1 1 1 1 0 0 0 0
>>4 0 0 0 0 m m m m

0 0 0 0 m m m m
+ 0 0 0 0 n n n n
= p p p p p p p p

Where
pppppppp = mmmm+nnnn

= ii+jj+kk+ll
= a+b+c+d+e+f+g+h

This is the population count.

Round #1 Round #2 Round #3

i i j j k k l l
& 0 0 1 1 0 0 1 1

0 0 j j 0 0 l l

m m m m n n n n
& 0 0 0 0 1 1 1 1

0 0 0 0 n n n n



  

Equivalence of Naïve and Bit Hack

Convert left sequence to IR.
Assert that val = EBX.
Query whether c31 == final EAX.
Answer:  YES; the sequences are equivalent.



  

Example:  Equivalence Checking for 
Verification of Deobfuscation

● Given some deobfuscation procedure, we want 
to ensure that the output is equivalent to the 
input



  

Is this … (1 of 2)



  

Is this ... (2 of 2)



  

… Equivalent to This?

Theorem prover says:  YES, if we ignore the values 
below terminal ESP



  

Inequivalence #1

These sequences are INEQUIVALENT:  the obfuscated version 
modifies the carry flag (with the add and sub instructions) before 
the inc takes place, and the inc instruction does not modify that 

flag.

Obfuscated version of inc dword handler.

Deobfuscated handler.



  

Inequivalence #2

The sar instruction does not change the flags if the shiftand is 
zero, whereas the obfuscated handler does change the flags via 

the add instructions.

Obfuscated version of sar dword handler.

Deobfuscated handler.



  

Inequivalence #3

Can't show obfuscated version due to it being 82 instructions long.
Obfuscated version writes to stack whereas deobfuscated version does not; therefore, 
the memory read on the last line could read a value below the stack pointer, which would 
be different in the obfuscated and deobfuscated version.



  

Warning:  Here Be Dragons
● I tried to make my presentation friendly; the 

literature does not make any such attempt
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Questions?
● Hopefully pertinent ones
● rolf.rolles at gmail



  

Thanks
● Jamie Gamble, Sean Heelan, Julien Vanegue, 

William Whistler
● All reverse engineers who publish

● Especially on the RE reddit
● RECON organizers
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