

The Case for Semantics-Based Methods in
Reverse Engineering

© Rolf Rolles, Funemployed
RECON 2012 Keynote

The Point of This Keynote
● Demonstrate the utility of academic program

analysis towards solving real-world reverse
engineering problems

Definitions
● Syntactic methods consider only the encoding

rather than the meaning of a given object, e.g.,
sequences of machine-code bytes or assembly
language instructions, perhaps with wildcards

● Semantic methods consider the meaning of
the object, e.g., the effects of one or more
instructions

Syntax vs. Semantics

● Syntactic methods
● tend to be fast, but are limited in power
● work well in some cases, and poorly in others
● are incapable of solving certain types of problems

● Semantic methods
● tend to be slower, but are more powerful
● some analyses might produce approximate

information (i.e. “maybe” instead of “yes” or “no”)

Syntax-Based Methods

● Are employed in cases such as
● Packer entrypoint signatures
● FLIRT signatures
● Methods to locate functionality e.g. FindCrypt
● Anti-virus byte-level signatures
● Deobfuscation of pattern-obfuscated code

Syntactic Methods: Strengths
● Syntactic methods work well when the

essential feature of the object lives in a
restricted syntactic universe
● FLIRT signatures in the case where the library is

actually statically-distributed and not recompiled
● Packer EP signatures when the packer always

generates the same entrypoint
● There is only one instance of some malicious

software
● Obfuscators with a limited vocabulary

FLIRT Signatures: Good Scenario
● Library statically-linked, not recompiled

Syntactic Methods: Weaknesses

● They do not work well when there are a variety
of ways to encode the same property
● FLIRT signatures when the library is recompiled
● Packer EP signatures when the packer generates

the EP polymorphically
● AV signatures for polymorphic malware, or malware

distributed in source form
● Complex obfuscators

● Making many signatures to account for the
variation is not a good solution either

FLIRT Signatures: Bad Scenario
● Library was recompiled

Semantics-Based Methods

● Numerous applications in RE, including:
● Automated key generator generation
● Semi-generic deobfuscation
● Automated bug discovery
● Switch-as-binary-search case recovery
● Stack tracking

● This keynote attacks these problems via abstract interpretation and
theorem proving

Exposing the Semantics

The right-hand side is the Intermediate
Language translation (or IR).

Design of a Semantics Translator
1.Programming language-theoretic decisions

● Tree-based? Three-address form?
2.Which behaviors to model?

● Exceptions? Low-level details e.g. segmentation?
3.How to model those behaviors?

● Sign flag: (result & 0x80000000), or (result < 0)?
● Carry/overflow flags: model them as bit hacks a la

Bochs, or as conditionals a la Relational REIL?
4.How to ensure correctness?
● Easier for the programmer != better results

Act I
Old-School Program Analysis

Abstract Interpretation

Abstract Interpretation: Signs
Analysis

● AI is complicated, but the basic ideas are not
● Ex: determine each variable's sign at each point

● Replaced the
● concrete state with an abstract state
● concrete semantics with an abstract semantics

Concept: Abstract the State
● Different abstract interpretations use different

abstract states.
● For the signs analysis, each

variable could be
● Unknown: either positive or

negative (+/-)
● Positive: x >= 0 (0+)
● Negative: x <= 0 (0-)
● Zero (0)
● Uninitialized (?)

● Ignore all other information, e.g., the actual
values of variables.

Concept: Abstract the Semantics (*)
● Abstract multiplication follows the well-known

“rule of signs” from grade school
● A positive times a positive is positive
● A negative times a negative is positive
● A negative times a positive is negative
● Note: these remarks refer to mathematical integers;

machine integers are subject to overflow

* ? 0 0+ 0- +/-
? +/- 0 +/- +/- +/-
0 0 0 0 0 0
0+ +/- 0 0+ 0- +/-
0- +/- 0 0- 0+ +/-
+/- +/- 0 +/- +/- +/-

Concept: Abstract the Semantics (+)
● Positive + positive = positive.
● Negative + negative = negative.
● Negative + positive = unknown:

● -5 + 5. Concretely, the result is 0.
● -6 + 5. Concretely, the result is -1.
● -5 + 6. Concretely, the result is 1.

+ ? 0 0+ 0- +/-
? +/- +/- +/- +/- +/-
0 +/- 0 0+ 0- +/-
0+ +/- 0+ 0+ +/- +/-
0- +/- 0 0- 0+ +/-
+/- +/- 0 +/- +/- +/-

Example: Sparse Switch Table
Recovery

● Use abstract interpretation to infer case labels
for switches compiled via binary search.

● Abstract domain: intervals.

Switch Tables: Contiguous, Indexed

Switch Tables: Sparsely-Populated

Switch cases are sparsely-distributed.

Cannot implement efficiently with a table.

One option is to replace the construct with
a series of if-statements.

This works, but takes O(N) time.

Instead, compilers generate decision trees
that take O(log(N)) time, as shown on the
next slide.

Decision Trees for Sparse Switches

Assembly Language Reification

Additional, slight complication: red instructions modify EAX
throughout the decision tree.

Assembly Language Reification,
Graphical

The Abstraction
● Insight: we care about what range of values

leads to a terminal case
● Data abstraction: Intervals [l,u], where l <= u
● Insight: construct implemented via sub, dec,

cmp instructions – all are actually subtractions –
and conditional branches

● Semantics abstraction: Preservation of
subtraction, bifurcation upon branching

Analysis Results

Beginning with no information about arg_0, each path
through the decision tree induces a constraint upon its
range of possible values, with single values or simple

ranges at case labels.

Example: Generic Deobfuscation
● Use abstract interpretation to remove

superfluous basic blocks from control flow
graphs.

● Abstract domain: three-valued bitvectors.

Anti-Tracing Control Obfuscation
● This code is an anti-

tracing check. First
it pushes the flags,
rotates the trap flag
into the zero flag
position, restores
the flags, and then
jumps if the zero
flag (i.e., the
previous trap flag)
is set.

● The 90mb binary
contains 10k-100k
of these checks.

Obfuscated Control Flow Graph

Left: control flow graph with obfuscation of the type on the previous slide.
Right: the same control flow graph with the bogus jumps removed by the analysis
that we are about to present.

A Semantic Pattern for This Check
● A bit in a quantity (e.g., the TF bit resulting from

a pushf instruction) is declared to be a constant
(e.g., zero), and then the bit is used in further
manipulations of that quantity.
● Abstractly similar to constant propagation, except

instead of entire quantities, we work on the bit level.

Problem: Unknown Bits
● We only know that certain bits are constant;

how do we handle non-constant ones?
● What happens if we …

● and, adc, add, cmp, dec, div, idiv, imul, inc, mul,
neg, not, or, rcl, rcr, rol, ror, sar, shl, shr, sbb, setcc,
sub, test, xor

● … quantities that contain unknown bits?

? ? ? 1 ? ? ? 0
* 1 ? ? ? ? 1 ? ?
= ? ? ? ? ? ? ? ?

Abstract Domain: Three-Valued
Bitvectors

● Abstract bits as having three values instead of
two: 0, 1, ½ (½ = unknown: could be 0 or 1)

● Model registers as vectors of three-valued bits
● Model memory as arrays of three-valued bytes

Abstract Semantics: AND
● Standard concrete semantics for AND:
● What happens when we introduce ½ bits?
● ½ AND 0 = 0 AND ½ = 0 (0 AND anything = 0)
● ½ AND 1 = 1 AND ½ = …

● If ½ = 0, then 0 AND 1 = 0
● If ½ = 1, then 1 AND 1 = 1
● Conflictory, therefore ½ AND 1 = ½.
● Similarly ½ AND ½ = ½.
● Final three-valued truth table:

AND 0 1
0 0 0
1 0 1

AND 0 ½ 1
0 0 0 0
½ 0 ½ ½
1 0 ½ 1

Abstract Semantics: Bitwise Operators

AND 0 ½ 1

0 0 0 0

½ 0 ½ ½

1 0 ½ 1

OR 0 ½ 1

0 0 ½ 1

½ ½ ½ 1

1 1 1 1

XOR 0 ½ 1

0 0 ½ 1

½ ½ ½ ½

1 1 ½ 0

NOT 0 ½ 1
1 ½ 0

These operators follow the same pattern as the derivation on the
previous slide, and work exactly how you would expect

Abstract Semantics: Shift Operators

½ 0 1 ½ 0 1 ½ 0 Some three-valued bitvector, call it BV

0 ½ 0 1 ½ 0 1 ½ BV SHR 1

0 1 ½ 0 1 ½ 0 0 BV SHL 1

½ ½ 0 1 ½ 0 1 ½ BV SAR 1

Rotation operators are decomposed into shifts and
ORs, so they are covered as well.

Concrete Semantics: Addition
● How addition C = A + B works on a real processor.
● A[i],B[i],C[i] means the bit at position i.

● At each bit position, there are 23 = 8 possibilities
for A[i], B[i], and the carry-in bit. The result is C[i]
and the carry-out bit.

Carry-Out 0 1 1 1 1 0 0 0
A[i] 0 1 0 1 1 0 1 0
B[i] 0 1 1 0 1 1 0 0
Carry-In 1 1 1 1 0 0 0 0
C[i] 1 1 0 0 0 1 1 0

Abstract Semantics: Addition
● Abstractly, A[i], B[i], and the carry-in are three-

valued, so there are 33 possibilities at each
position.

● The derivation is straightforward but tedious.
● Notice that the system automatically determines

that the sum of two N-bit integers is at most
N+1 bits.

Carry-Out 0 0 0 ½ ½ ½
A[i] 0 0 0 ½ ½ ½
B[i] 0 0 0 ½ ½ ½
Carry-In 0 0 ½ ½ ½ 0
Result 0 0 ½ ½ ½ ½

Abstract Semantics: Negation,
Subtraction

● Neg(x) = Not(x)+1
● Sub(x,y) = Add(x,~y) where the initial carry-in

for the addition is set to one instead of zero.
● Therefore, these operators can be implemented

based upon what we presented already.

Unsigned Multiplication
● Consider B = A * 0x123
● 0x123 = 0001 0010 0011 = 28 + 25 + 21 + 20

● B = A * (28 + 25 + 21 + 20) (substitution)

● B = A * 28 + A * 25 + A * 21 + A * 20 (distributivity: * over +)

● B = (A << 8) + (A << 5) + (A << 1) + (A << 0)
(definition of <<)

● Whence unsigned multiplication reduces to
previously-solved problems

● Signed multiplication is trickier, but similar

Abstract Semantics: Conditionals
● For equality, if any concrete bits mismatch, then

A != B is true, and A == B is false.

● For A < B, compute B-A and take the carry-out
as the result

● For A <= B, compute (A < B) | (A == B).

A ½ 1 ½ ½ ½ 0 ½ ½
B ½ 0 ½ ½ ½ 0 ½ ½

Deobfuscation Procedure
● Generate control flow graph
1.Apply the analysis to each basic block
2.If any conditional jump becomes unconditional,

remove the false edge from the graph
3.Prune all vertices with no incoming edges (DFS)
4.Merge all vertices with a sole successor, whose

successor has a sole predecessor
5.Iterate back to #1 until the graph stops changing
● Stupid algorithm, could be majorly improved

Progressive Deobfuscation

Original graph: 232
vertices

Deobfuscation round #1: five
vertices

Deobfuscation round #2,
final: one vertex

Example: Tracking ESP
● We explore and generalize Ilfak's work on stack

tracking.
● Abstract domains: convex polyhedra and

friends in the relational domain family.

Concept: Relational Abstractions
● So far, the analyses treated variables

separately; we now consider analyses that treat
variables in combination

● Below: two-dimensional convex polyhedra
induced by linear inequalities over x and y

y < x y < 10 - x y < x && y < 10 - x && y > 0

Stack Tracking, Ilfak 2006
● Want to know the differential of ESP between

function begin and every point in the function.
● Problem: indirect calls with unknown calling

conventions.

Stack Tracking
● Generate a convex

polyhedron, defined by:
● Two variables for every

block: in_esp, out_esp.
● One equality for each initial

and terminal block.
● One equality for each edge

(#i,#j): out_esp_i = in_esp_j
● One inequality (not shown)

for each block #n, relating
in_esp_n to out_esp_n,
based on the semantics
(ESP modifications: calls,
pushes, pops) of the block.

● Solve the equation system
for an assignment to the
ESP-related variables.

Stack Tracking: Inequalities

This block pushes 6 DWORDs (24 bytes) on the stack, and it is unknown whether the call
removes them. Therefore, the inequality generated for this block is:

out_esp_5 - in_esp_5 <= 24

Alternative Formulations
● Ilfak's solution uses polyhedra, which is

potentially computationally expensive
● Note: all equations are of the form v

i
 – v

j
 <= c

ij
,

which can be solved in O(|V|*|E|) time with
Bellman-Ford (or other PTIME solutions)

Figure stolen from Antoine Mine's Ph.D. thesis due to lack of time. Sorry.

Random Concept: Reduced Product
● Instead of performing analyses separately,

allow them to interact => increased precision
● Suppose we perform several analyses, and the

results for variable x at some point are:
● x = [-10,6] (Interval)
● x = 0+ (Sign)
● x = Odd (Parity)

● Using the other domains, we can refine the
interval abstraction:
● Reduced product of ([-10,6],0+) = ([0,6],0+)
● Reduced product of ([0,6],Odd) = ([1,5],Odd)

Act II
New-School Program Analysis

SMT Solving

Concept: Input Crafting via
Theorem Proving

● Idea: convert portions of code into logical
formulas, and use mathematically precise
techniques to prove properties about them

● Example: what value must EAX have at the
beginning of this snippet in order for EAX to be
0x12345678 after the snippet executes?

IR to SMT Formula

Part of the IR translation of the x86 snippet
given on the previous slide.

A slightly simplified (read: incorrect) SMT
QF_EUFBV translation of the IR from the left.

Ask a Question
● Given the SMT formula, initial EAX unspecified, is

it possible that this postcondition is true?
● assert(T175d == 0x12345678); (T175d is final EAX)

● The SMT solver outputs a
model that satisfies the
constraints.

● The first red line says that the
formula is satisfiable, i.e., the
answer is yes.

● The final red line says that the
initial value of EAX must be
1450744509, or 0x56789ABD.

Automated Key Generator Generation
● As before, generate an

execution trace (statically)
and convert to IR. Then
convert the IR to an SMT
formula.

● Precondition:
a_ActivationCode[0] = X &&
a_ActivationCode[1] = Y &&
a_ActivationCode[2] = Z …
where
X = regcode[0],
Y = regcode[1],
Z = regcode[2], ...

● Postcondition:
String_derived[0] = '0' &&
String_derived[1] = 'h' &&
String_derived[2] = 'o' ...

Example: Equivalence Checking for
Error Discovery

● We employ a theorem prover (SMT solver)
towards the problem of finding situations in
which virtualization obfuscators produce
incorrect translations of the input.

Concept: Equivalence Checking

Iterative bit-tests Sequential ternary operator

● Population counting, naïvely. Count the
number of one-bits set.

Population Count via Bit Hacks

● Looks crazy; the next slide
will demonstrate how this
works

8-Bit Population Count via Bit Hacks

a b c d e f g h
& 0 1 0 1 0 1 0 1

0 b 0 d 0 f 0 h

a b c d e f g h
& 1 0 1 0 1 0 1 0
>>1 0 a 0 c 0 e 0 g

0 a 0 c 0 e 0 g
+ 0 b 0 d 0 f 0 h
= i i j j k k l l

Where
ii = a+b
jj = c+d
kk = e+f
ll = g+h

i i j j k k l l
& 1 1 0 0 1 1 0 0
>>2 0 0 i i 0 0 k k

0 0 i i 0 0 k k
+ 0 0 j j 0 0 l l
= m m m m n n n n

Where
mmmm = ii+jj
nnnn = kk+ll

m m m m n n n n
& 1 1 1 1 0 0 0 0
>>4 0 0 0 0 m m m m

0 0 0 0 m m m m
+ 0 0 0 0 n n n n
= p p p p p p p p

Where
pppppppp = mmmm+nnnn

= ii+jj+kk+ll
= a+b+c+d+e+f+g+h

This is the population count.

Round #1 Round #2 Round #3

i i j j k k l l
& 0 0 1 1 0 0 1 1

0 0 j j 0 0 l l

m m m m n n n n
& 0 0 0 0 1 1 1 1

0 0 0 0 n n n n

Equivalence of Naïve and Bit Hack

Convert left sequence to IR.
Assert that val = EBX.
Query whether c31 == final EAX.
Answer: YES; the sequences are equivalent.

Example: Equivalence Checking for
Verification of Deobfuscation

● Given some deobfuscation procedure, we want
to ensure that the output is equivalent to the
input

Is this … (1 of 2)

Is this ... (2 of 2)

… Equivalent to This?

Theorem prover says: YES, if we ignore the values
below terminal ESP

Inequivalence #1

These sequences are INEQUIVALENT: the obfuscated version
modifies the carry flag (with the add and sub instructions) before
the inc takes place, and the inc instruction does not modify that

flag.

Obfuscated version of inc dword handler.

Deobfuscated handler.

Inequivalence #2

The sar instruction does not change the flags if the shiftand is
zero, whereas the obfuscated handler does change the flags via

the add instructions.

Obfuscated version of sar dword handler.

Deobfuscated handler.

Inequivalence #3

Can't show obfuscated version due to it being 82 instructions long.
Obfuscated version writes to stack whereas deobfuscated version does not; therefore,
the memory read on the last line could read a value below the stack pointer, which would
be different in the obfuscated and deobfuscated version.

Warning: Here Be Dragons
● I tried to make my presentation friendly; the

literature does not make any such attempt

References
● A program analysis reading list that I compiled

– http://www.reddit.com/r/ReverseEngineering/comments/smf4u/
reverser_wanting_to_develop_mathematically/c4fa6yl

● Rolles: Switch as Binary Search
– https://www.openrce.org/blog/view/1319/
– https://www.openrce.org/blog/view/1320/

● Rolles: Control Flow Deobfuscation via Abstract Interpretation
– https://www.openrce.org/blog/view/1672/

● Rolles: Finding Bugs in VMs with a Theorem Prover
– https://www.openrce.org/blog/view/1963/

● Rolles: Semi-Automated Input Crafting
– https://www.openrce.org/blog/view/2049/

● Ilfak: Simplex Method in IDA Pro
– http://www.hexblog.com/?p=42

https://www.openrce.org/blog/view/1319/

Questions?
● Hopefully pertinent ones
● rolf.rolles at gmail

Thanks
● Jamie Gamble, Sean Heelan, Julien Vanegue,

William Whistler
● All reverse engineers who publish

● Especially on the RE reddit
● RECON organizers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

