
Be Social. Use CrowdRE.
An IDA Plugin for Collaborative Reversing

Tillmann Werner, Jason Geffner

RECON, Montreal, Canada

Friday, June 15, 2012

CrowdStrike

■ Stealth mode startup

■ Handpicked ‘A’ team of technical talent

■ 26 Million Series A funding

■ “You don’t have a malware problem, you have an adversary
problem”™

■ We are hiring!

Special Thanks

Georg Wicherski

Sr. Research Scientist

Aaron Putnam

Sr. Research Engineer

TJ Little and Harley

Sr. UI Engineers

Jeff Stambolsky

Resident Nerd

Why

■ Developers work in teams to build the software we are reversing
■ Stuxnet, Flame, Duqu

■ RATs like PoisonIvy

■ Bots like Zeus

■ calc.exe

■ Code reuse is prevalent in malware variants

■ Working together, we can reverse more quickly and efficiently

■ Take a page from developer world and model RE after source
control methodologies

?

Collaborative Reversing

■ Approach 1: Just-in-time propagation of results
■ All changes are synchronized to all users instantly

■ Well-suited for teaching reverse-engineering, demonstrations, etc.

■ Approach 2: Working on different parts, sharing results on demand
■ Distributed tasks

■ Multiple people can work on different parts simultaneously

■ Analysis results can be combined at any time

Related Work – Tools of the Trade

■ IDA Sync, 2005
■ Real-time synchronization of names, stack variables, comments

■ Hooks into IDA hot keys

■ CollabREate, 2008
■ Successor of IDA Sync: IDA Pro “remote-control”

■ Snapshot report: replay all updates up until a certain point

■ BinCrowd, 2010

■ Commit-based model

■ Supports matching similar functions

The Platform

■ Community platform to support professional, distributed RE
■ Design similar to version control systems

■ Commits: annotations per function

■ Free Cloud service for the reverse engineering community
■ People can share their results

■ Reverse engineering projects can benefit from community input

■ IDA Pro plugin
■ Utilizes the power of the Hex-Rays Decompiler plugin

■ Integrates smoothly into IDA’s Qt GUI

Rewoltke  CrowdRE

+ = rewoltke

 ...

BinNavi Integration

■ Google is adding integration for CrowdRE to BinNavi

■ Analysts will be able to use BinNavi to share their analysis results
with the CrowdRE community

■ Our best wishes go to Thomas Dullien for a speedy recovery

Annotations

■ Function prototype
■ Name

■ Calling convention

■ Return type

■ Parameter types and names

■ Stack variables

■ Register variables (Hex-Rays)

■ Structs, enums

■ Comments – IDA and Hex-Rays

Type Information

■ Types
■ Structs

■ Enums

■ User-defined types

■ Function annotations depend on types
■ Dependencies are recursively included

■ Checkouts contain dependencies, too

■ Name duplicates require conflict resolution

■ User is prompted for solution (update, retain, keep)

■ Future plan: resolving cyclic dependencies

Importing Annotations

■ Batch import
■ The first thing to do when starting

to work on a new binary

■ Always the most recent commit

■ Individual imports
■ More control over what to import

■ User can choose between different versions

Finding Functions

■ Exact matching
■ Binary’s hash + function offset

■ Fuzzy matching
■ SHA1 hash over sequence of mnemonics

■ Position-independent representation
■ Want to cover immediates, too

■ Jump and call operands are zeroed out

■ Same for immediates that generate
cross-references

Dealing with Multiple Matches

■ Multiple matches – which is the best?
■ Quality of the annotation

■ Code similarity

■ Compute similarity value for pairs of inputs

■ Rank by this value, let the user choose

■ Similarity hashing
■ Assign consecutive basic blocks to chunks

■ Fixed number of chunks ensures constant sized output

■ For each chunk: compute FNV hash

■ Combine FNV hashes to final hash

■ s(a, b) = 100 – normalized_levenshtein(simhash(a), simhash(b))

FNV Hashes

• Fast to compute

• Good Avalanche behavior

• For different word sizes

hash := FNV_BASIS

for byte in input:

hash ^= byte

hash *= FNV_PRIME

Similarity Hashing – Details

■ Basic block reordering poses challenges
■ Define an order on the set of basic blocks

■ Come up with a reordering resilient scheme

■ Fuzzy hash serves as pre-filter
■ Matches are usually 100% equal

■ Make fuzzy hash more fuzzy

■ Position-independent representation quite strict

■ Need to take instruction reordering into account

■ Improved algorithms in future versions

BB1 BB2 BB4 BB3

fnv1 fnv2

Demo Time!

Future Plans

■ Integration with other RE tools?

■ Cloud service
■ Social ratings of commits

■ Access control lists

■ Client
■ Real time notifications on updated annotations

■ New and improved matching algorithms

■ Ability to deal with cyclic type dependencies

■ Tracking of function/file mappings

■ Mass importing of common library code

Where to get it: http://crowd.re

