Be Socilal. Use CrowdRE.

An IDA Plugin for Collaborative Reversing

Tillmann Werner, Jason Geffner
i) =5

\
\ \

\ \
\

\\ £

C’PDI_LId = l-r-ll—le

\
\
\ \
\ \ \
\ \
\
\ \

\

RE\CON, Montreal, Canada
Friday, June 15, 2012

CrowdStrike

m Stealth mode startup
m Handpicked ‘A’ team of technical talent
m 26 Million Series A funding

m "You don’t have a malware problem, you have an adversary
problem”™

m We are hiring!

Special Thanks ==

Georg Wicherski Aaron Putnam TJ Little and Harley Jeff StambOISky
Sr. Research Scientist ~ Sr. Research Engineer Sr. Ul Engineers Resident Nerd

Why ®CrouJdJdRE. 7

m Developers work in teams to build the software we are reversmg
m Stuxnet, Flame, Duqu
m RATSs like Poisonlvy
m Bots like Zeus
m calc.exe

m Code reuse Is prevalent in malware variants
m Working together, we can reverse more quickly and efficiently

m Take a page from developer world and model RE after source
control methodologies

Collaborative Reversing

m Approach 1: Just-in-time propagation of results
m All changes are synchronized to all users instantly
m Well-suited for teaching reverse-engineering, demonstrations, etc.

m Approach 2: Working on different parts, sharing results on demand
m Distributed tasks
m Multiple people can work on different parts simultaneously
m Analysis results can be combined at any time

Related Work — Tools of the Trade

m IDA Sync, 2005
m Real-time synchronization of names, stack variables, comments

m Hooks into IDA hot keys

m CollabREate, 2008

m Successor of IDA Sync: IDA Pro “remote-control”
m Snapshot report: replay all updates up until a certain point

m BinCrowd, 2010

m Commit-based model
m Supports matching similar functions

The ®CrouwdJRE.. Platform

m Community platform to support professional, distributed RE
m Design similar to version control systems
m Commits: annotations per function

m Free Cloud service for the reverse engineering community
m People can share their results
m Reverse engineering projects can benefit from community input

m IDA Pro plugin
m Utilizes the power of the Hex-Rays Decompiler plugin
m Integrates smoothly into IDA’s Qt GUI

Rewoltke =2 CrowdRE

% i

| = rewoltke

.- WCrowdRE

-

BinNavi Integration E i

m Google is adding integration for CrowdRE to BinNavi

m Analysts will be able to use BinNavi to share their analysis results
with the CrowdRE community

m Our best wishes go to Thomas Dullien for a speedy recovery

int _ _cdecl main{int argc, const char ==argu)

{

Annotations e 1 ez

std basic string rep =string header; //
void =end; F/f

1lpstring it; 7/

signed int32 refcount; //

std__vector parameters_vector; //f
std__basic_string tmp_string; /7

- .Si_:ar_‘t = 8; /f these three HULL assigns are inlined vector::vector
m Function prototype oot staiage - 0

std::vector<{std::string_std::allocator<{std::string>>::reserve(f N 3;

if | > 8
- Ca”ing Convention ¢ std::string::string{& s [i1);

if | .Finish == -end_of_storage)}

- Return type ¢ 5t|:i::uectur<5td::str‘ing_std::allucatur(Std::5t|‘ing>>::_M_insert_aux{
m Parameter types and names

Stack variables

Register variables (Hex-Rays)
Structs, enums

Comments — IDA and Hex-Rays

1 Type Conflict Resolution

Type Information

m Types
m Structs
m User-defined types

m Function annotations depend on types
m Dependencies are recursively included
m Checkouts contain dependencies, too

m Name duplicates require conflict resolution
m User is prompted for solution (update, retain, keep)

m Future plan: resolving cyclic dependencies

Importing Annotations e

% Fuzzy m 1 (based on bytecode hash)

" Exact match (same binary and relative offset)

Functions

O040F4c4 | +e4c4 Hjob_reugest_loop Joh_revigest_ap Tillrnann YWerner

=

00417Fa5 | +16Fa5 | sub_417FAS boofsteap Tillmann YWerner

m The first thing to do when starting -
to Work On a- neW blnary - e [v Set name & prokotvpe to "int _cdecl InfectExplarer{thread_param_t *)"

m Always the most recent commit s

®

I

[| Comments

00401000 f 40000 1 ?70bad_
Dffset | Repeatable

Oo: g

00401024 [+0024 link __Ehi

m Individual imports
m More control over what to import
m User can choose between different versions

MORD -2a01r

HAMDLE hProcess

__unépped Parametar

Finding Functions

m Exact matching
m Binary’'s hash + function offset

m Fuzzy matching
m SHAL hash over sequence of mnemonics

m Position-independent representation
m Want to cover immediates, too
m Jump and call operands are zeroed out

m Same for immediates that generate
cross-references

ebp

ebp, esp

esp, BFFFFFFFB8h
esp, 14h

ebx

esi

edi

eax, [esp+2B8h+Time]
esi, ecx

ehx, ebhx

Pax ; Time
edi, [esi+288h]

dword ptr [esp+24h+Time], ebx
dword ptr [esp+24h+Time+4], ebx

eax, dword ptr [esp+2hh+Time+4]
ecx

ecx, dword ptr [esp+2Bh+Time]
ecx, [edi]

eax, [edi+h]

eax, [edi+BCh]

short loc_417FFA

ig short loc_ W417FE7

CEE

ecx, [edi+8]
short loc_417FFA

T

eax, eax
ecx, [eax+esi]

eax, offset sub_416232
eax ; sub_ 416232
edi ; Time

ebp

ebp, esp

esp, BFFFFFFFEh

esp, 14h

ebx

esi

edi

eax, [esp+28h+Time]

esi, ecx

ebx, ebx

pax ; Time

edi, [esi+288h]

dword ptr [esp+24h+Time], ebx
dvord ptr [esp+24h+Time+4], ebx

eax, dword ptr [esp+24h+Time+4]
BCH

ecx, dword ptr [esp+28h+Time]
ecx, [edi]

eax, [edi+i]

eax, [edi+BCh]

short loc 417F84

short loc_W17F73

CEEE

cmp ecx, [edi+8]
jbe short loc_417F86

loc_ M17F73:

eax, eax

ec¥, [eax+esi]

eax, offset sub_ 416197
eax ; sub_416197

edi ; Time

Dealing with Multiple Matches

FNV Hashes
. _ _ * Fast to compute |
m Multiple matches — which Is the best? S cood-Avalanche elimion
m Quality of the annotation - For different word sizes
m Code similarity | |
m Compute similarity value for pairs of inputs hash := FNV_BASIS
m Rank by this value, let the user choose - for byte in input:
hash "= byte

TaallP-1g ' ~ hash *= FNV PRIME
m Similarity hashing o -

m Assign consecutive basic blocks to chunks
m Fixed number of chunks ensures constant sized output
m For each chunk: compute FNV hash
m Combine FNV hashes to final hash
m s(a, b) =100 - normalized_levenshtein(simhash(a), simhash(b))

Similarity Hashing — Detalls

m Basic block reordering poses challenges
m Define an order on the set of basic blocks
m Come up with a reordering resilient scheme

m Fuzzy hash serves as pre-filter \

m Matches are usually 100% equal

m Make fuzzy hash more fuzzy
m Position-independent representation quite strict
m Need to take instruction reordering into account

m Improved algorithms in future versions

Demo Timel

Future Plans

m Integration with other RE tools?

m Cloud service
m Social ratings of commits
m Access control lists

m Client
m Real time notifications on updated annotations
m New and improved matching algorithms
m Ability to deal with cyclic type dependencies
m Tracking of function/file mappings
m Mass importing of common library code

Where to get it: http://crowd.re

?3 CfOLUd BEOL
’a Sign in with Google

Crouidd Sric

