B SmartDec

Reverse engineering of binary
programs for custom virtual
machines

Alexander Chernov, PhD
Katerina Troshina, PhD

Moscow, Russsia

SmartDec.net

About us

SmartDec decompiler
Academic background
Defended Ph.D.

N

Industry

Once upon a time...
* |n a country far far away...

* Reverse engineering of binary code
— No datasheet
— Very poor documentation

g

High-level representation for engineers

Once upon a time...

High-level representation for engineers
* Call graph
* Flow-chart

e Ccode

Approaches to the analysis

* First thought: to search the code and
data for clues about processor type

* To try different disassemblers and
check if the disassembled listing looks

like a program

— IDA Pro supports above 100 “popular”
processors (no luck)

— Download and try disassemblers for other
processors (no luck)

Approaches to the analysis

* Fallback: to try to go as far as possible
in binary analysis collecting
information about processor

e |nitial information:

— Rough separation of code and data
(based on pieces of documentation and
“look” of data)

— Enough code for statistics to be
meaningful (some 30 KiB)

Search space

e Architecture search space:
— Word byte order: LE, BE

— Instruction encoding: byte stream/WORD
stream/DWORD stream...

— Code/data address space: uniform (von
Neumann), separate (Harvard)

— Code addressing: byte, WORD, ...
— Register based, stack based

[WORD - 2 bytes, DWORD -4 bytes]

RET instruction

* Possible instruction encoding: fixed-
width WORD

* Expected “Return from subroutine”
(RET) instruction properties:

— RET instruction has a single fixed opcode
and no arguments

— RET instruction opcode is statistically
among the most frequent 16-bit values in
code

. 20 most frequent 16-bit values: . Reference: most frequent instructions of
0b01 854 5.1 Java bytecode (in the standard libs of jre6)

0800 473 ALOAD 878565 18
8c0d 432 DUP 382278
2b00 401 INVOKEVIRTUAL 328763
4elc 365 LDC 231162
0801 277 GETFIELD 230158
890f 261 ILOAD 214427
809 217 STPUSH 207427
0f00 196 AASTORE 168088
0b00 195 INVOKESPECIAL 140387
Ob8f 162 ICONST_O 132669
4301 163 ASTORE 128835
0b36 155 BIPUSH 126262
0802 149 ICONST_1 107881
3ddc 145 SASTORE 96677
0b80 132 PUTFIELD 87405
990f 131 NEW 84285
8afa 125 GOTO 80815
laff 119 RETURN 70388
0900 117 [STORE 70064
ARETURN 68054
All returns: 176860

ﬂ

8
6
4
2
6
6
3
2

2.
2.
2.
2.
1.
1.
1.
1.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

W — H = NN NN W S SO
N T~ ~1 00 OO =1~ U W 0000 00 WO

Possible code structure

subl: ...
CALL subn # absolute address

RET

sub?: ... # follows RET
RET

subn: ... # follows RET
RET

CALL heuristics

* Assumption 1: there exists a CALL

instruction taking the absolute address
of a subroutine

* Assumption 2: a considerable number

of subroutines start immediately after
RET instruction

CALL search

e Search space: for each candidate for RET,
try all possible CALL candidates with
addresses as 16-bit bitmask in 32-bit
words, LE/BE, 16-bit/byte addressing

e Example:

— 4 bytes: 12 3456 78
— Address bitmask: 00 00 ff ff (4057 different)
— Opcode: 12 34 XX XX

— Address: 56 78
e LE: 7856 (byte addr), FOAC (WORD addr)
* BE: 5678 (byte addr), ACFO (WORD addr)

CALL search results

* Only one match!

Trying 8c0Od as RET

After-ret—addr-set-size: 430
Matching call opcodes for 1, ff00ff00, 1: 000b003d: total: 1275, hits: 843 (66%),
misses: 432 (33%), coverage: 76%

* 430 — number of positions after RET
candidate

1275 — total DWORDs with mask 00ffOOff
843 — calls to addresses right after RET
432 — calls to somewhere else

76% positions after RET are covered

RET search results

e RET: 8c0d (WORD LE)

* Absolute call to HHLL:

ObHH 3dLL (2 WORD LE)

* Confirmation: code areas end with RET:

0000de30 3d88 8cOd 3901 0b24 3daf 2b00 a942 2b00

JMP search heuristics

Assumption 1: absolute unconditional
JMP has structure similar to call: XXHH
YYLL

Assumption 2: there must be no JMP’s
to outside of code

Assumption 3: there may be JMP’s to
addresses following RETs

Assumption 4: absolute JMPs are not
rare

JMP search results

e Search result:

Candidate opcode: 000b000c
total: 82, hits: 7, misses: 0 adds: 0400 65a8 668e

Candidate opcode: 004e000b

total: 352, hits: 1, misses: O adds: 37c6
Candidate opcode: 004e00bf

total: 82, hits: 3, misses: 0 adds: 39b4
Candidate opcode: 00d8008c

total: 29, hits: 5, misses: 0 adds: 31lc 5232
 Arguments for ObHH OclLL:
— Similarity to CALL encoding

— Some code blocks end with this
instruction

"FRel. IMP search heuristics

Set of target addresses: addresses after RET
and JMP and first addresses of code segments

Assumption 1: offset occupies one byte

Assumption 2: offset is added to the address
of the next instruction

Assumption 3: code is WORD-addressed

Assumption 4: relative jumps rarely cross RET
instructions

Assumption 5: no relative jumps to outside of
code

Search produces 32 candidates

Rel. JMP search first results

Candidate opcode OcXX - Similar to
absolute unconditional JMP ObHH
OcXX

Assumption 1: ObHH — prefix
instruction making jump (or call)

absolute

Assumption 2: 0cXX — unconditional
relative jump

Redo relative jump instruction search
with two new assumptions

Example

#1112 +27 *2==1160
1112: ...

115c: 0bOf 0c30 JMP 0f30 # Uncond. abs jump
1160: ... # Jump target

1218:0c12 JMP 123e # Uncond rel. jump
121a: ... # Jump target

#123e + ffee * 2 ==121a

Rel. JMP search results

Search results:

Candidate opcode: 1c00

total: 207, hits: 92, misses: 0, xrets = 12
Candidate opcode: (0b00) 2c00

total: 159, Ob_prefixed: 2, hits: 55, misses: 0, xrets = 19
Candidate opcode: (0b00) 3c00

total: 78, Ob_prefixed: 2, hits: 36, misses: 0, xrets = 20
Candidate opcode: 4c00

total: 81, hits: 40, misses: 0, xrets =5
Candidate opcode: (0b00) 5c00

total: 93, Ob_prefixed: 2, hits: 43, misses: 0, xrets = 12
Candidate opcode: (0b00) 6¢c00

total: 182, Ob_prefixed: 2, hits: 72, misses: 0, xrets = 5
Candidate opcode: (0b00) 7c00

total: 147, Ob_prefixed: 1, hits: 81, misses: 0, xrets = 23

Assumption: these are relative conditional jumps

Intermediate results

* Instructions identified:
— CALL
— RET
— JMP
— Conditional JMPs

* High-byte extenstion prefix is
identified

* Control-flow graph can be built and
the general structure can be identified

Cond. arithmetics heuristics

* Assumption 1: there are instructions
like AND and CMP with immediate
arguments preceding conditional
jumps

* Assumption 2: the opcodes are XXLL or
ObHH XXLL (byte or WORD values)

* Build the set of opcodes and the
corresponding values

Cond. arithm. search results

e Search results:
Jump opcode 1c (207)
Opcode: 1a

0001:1

0002:1

0100:
0200:
1000:
4000:

Arith. refinement

Opcodes 1c, 5c:JZ, INZ
Opcodes 3¢, 7c: JEQ, JNE

Opcode 1a: AND with immediate
argument

Opcode 78: CMP with immediate
argument

— Opcode 78 always occurs just before
conditional jumps 3c and 7c

Opcode f8: also always occurs just
before conditional jumps

Load-store pattern

* Patterns:
ObHH 3fLL 890f 4a01 8f09
ObHH 3fLL 990f 4a01 8f19

Assumption 1: memory load, +1 (or -1), memory
store

Assumption 2: registers 0 and 1 are used
4301 is never used before condjumps -> ADD
MOV DPO, HHLL
MOV RO, @DPO
ADD ACC, 1
MOV @DPO, RO

Memory clear pattern

e Often used:
ObHH 3fLL Of00

* Corresponds to

MOV DPO, HHLL
MOV @DPO, O

(0
(0

) 2aLL — OR immediate

) 3aLL — XOR immediate

(O) 4alLL — ADD immediate

(O) 5aLL — SUB immediate
ObHH 3fLL — load memory address
890f — load RO from memory
990f — load R1 from memory

8f09 — store RO to memory

8f19 — store R1 to memory

D
D
D
D

Operation encoding

e Known MOVs:

890f
990f
8f09
8f19
0f00
->

2772
2772
2772
2772

MOV
MOV
MOV
MOV
MOV

MOV
MOV
MOV
MOV

RO, @DPO
R1, @DPO
@DPO, RO
@DPO, R1
@DPO, 0

RO, R1
R1, RO
RO, O
R1, 1

* Known operations:
5a01 SUB ACC, 1
->
???? SUB ACC, RO

Operation encoding

e Known MOVs:

890f
990f
8f09
8f19
0f00
->
8919
9909
0900
1901

MOV
MOV
MOV
MOV
MOV

MOV
MOV
MOV
MOV

RO, @DPO
R1, @DPO
@DPO, RO
@DPO, R1
@DPO, 0

RO, R1
R1, RO
RO, O
R1, 1

* Known operations:
5301 SUB ACC, 1
->
da09 SUB ACC, RO

Register structure

* |nstruction O8RR changes the active
accumulator (0800, 0801 ... 080f)

* Arithmetics: one operand is explicit,
another is active accumulator

 The processor has at least 16
arithmetic registers O - F

00002240
00002250
00002260
00002a70
00002a80
00002290
00002aa0
00002ah0
00002ac0
00002ad0

0800
delc
890f
0b03
3162
3116
d307
0bOf
0bOe
0bOc

0b&0
0b01
8c0d
327
0bOf
0bOf
delc
3df2
3d22
3d8b

Results

3a00
3125
delc
0f0f
3d8&8
3d92
0b01
0b02
0b02
0b02

0802
890f
bf3f
4e58
0b03
0b03
3f2e
3170
3170
3150

Total: 16862, Code: 13734 (81%)
Different 16-bit values: 2085, known: 1618 (77%)

0b80
8c0d
890f
2bb1
3f8¢c
3f72
0bOf
0b0d
0bOf
0bOf

3a00
delc
4e88
3f22
0bOf
8109
3d22
3d8b
3d14
3daf

da29
0Ob01
8c0d
898 f
3d92
8958
0b03
0Ob01
0b02
0b02

8c0d
326
4e28
0b03
0b03
laff
3fac
355
3f7b
3f7b

PREFIX

MOV AP, O
RET

PREFIX

?

MOV AP, 1
MOV RO, @DPO
MOV @DPO, RO
MOV @DPO, 0
PREFIX
PREFIX

ADD ACC, 1
PREFIX

MOV AP, 1
CALL ...
PREFIX

MOV R1, @DPO
o

AND ACC, ff
MOV RO, O

Top values

change the current accumulator

change the current accumulator
load from data memory

store to data memory

store O to data memory

Lessons learned

* [tis possible to discover
— Subroutine structure
— Unconditional and conditional jumps
— Some arithmetic instructions

— Rough register structure

* Only by binary analysis of the code
without virtual machine (processor)
data sheets

Limitations

 No obfuscation
* Most subroutines follow each other

Tool support

annotations

decompiler

binary code

A

£
flowchart

call graph

assembly listing

annotations

Opcode specifications

Specification of code and data areas
Entry points

Symbolic cell names

Subroutine range and description

Inline and outline specifications

SmartDec decompiler

* Demo version is free available at
decompilation.info

* Current state:
— Alpha-version
— Supports limited set of x86/x64 assembly

instructions

— Supports objdump/dumpbin disassembly
backbends

— Initial support for C++ exceptions and
class hierarchy recovery

Thank you for your
attention

Questions?

info@decompilation.info

