
FOTIS	LOUKOS

<FOTISL@SSL.COM>

SSL	CORP

RECON	BRUSSELS
2016

HACKABLE	SECURITY
MODULES:

REVERSING	AND	EXPLOITING	A	FIPS
140-2	LVL	3	HSM	FIRMWARE

WHO	AM	I?
Fotis	Loukos

Go	by	the	nick	fotisl
Work	at	SSL.com,	a	globally	trusted	Certification
Authority	focusing	on	TLS/SSL	and	Code	Signing
Hold	a	PhD	in	Computer	Science	from	the
Aristotle	University	of	Thessaloniki
My	work	focuses	on	Public	Key	Infrastructures,
Certification	Authorities	security,	vulnerability
research	and	reverse	engineering

OUTLINE
What	is	an	HSM	and	HSM	security	requirements
The	Utimaco	HSM	and	its	Firmware
The	TMS320C64x	DSP
Adding	a	new	architecture	to	Capstone
Searching	for	vulnerabilities

WHAT	IS	AN	HSM?

USAGE
Securely	store	cryptographic	keys
Manage	(generate	etc)	cryptographic	keys
Perform	cryptographic	operations	(encrypt,
decrypt,	sign,	verify,	wrap,	unwrap,	etc)

Network	device PCI	card

PHYSICAL	FORM

BIG	PLAYERS
Gemalto

Bought	Safenet,	another	big	player
Famous	for	the	Luna	series	of	products
Sample	value	for	the	Safenet	Network	HSM
7000	Model:	$29,500.00

BIG	PLAYERS
Thales

Bought	nCipher,	the	second	big	player
Famous	for	the	nShield	series	of	products
Sample	value	for	the	USB	nShield	Edge	HSM
with	ECC	activation:	$9,500.00

BIG	PLAYERS
Utimaco

Primary	target
Famous	for	the	Cryptoserver	series	of	products
Part	of	the	EJBCA	ready-to-deploy	PKI	solution
by	PrimeKey
Sample	value	for	the	SecurityServer	Se52	LAN
V4:	15,000.00€

A	BUSINESS	WITH	A	LOT	OF
MONEY

WHERE	ARE	THEY	USED?

PKI
All	Certification	Authorities	(CAs)	are	required	to
use	HSMs.	From	the	CA/B	Forum	Baseline

requirements:

The	CA	SHALL	protect	its	Private	Key	in	a	system	or
device	that	has	been	validated	as	meeting	at	least	FIPS

140	level	3	or	an	appropriate	Common	Criteria
Protection	Profile	or	Security	Target,	EAL	4	(or	higher),
which	includes	requirements	to	protect	the	Private	Key

and	other	assets	against	known	threats.

DNSSEC
Root	Zone	operators	store	keys	inside	HSMs.	From
the	DNSSEC	Practice	Statement	for	the	Root	Zone

KSK	Operator:

For	RZ	KSK	generation	and	RZ	KSK	private	component
operations	and	storage,	ICANN	uses	hardware	security

modules	that	are	validated	at	FIPS	140-2	level	4
overall.

ELECTRONIC
TRANSACTIONS

PCI	DSS	in	some	cases	requires	HSMs	to	secure
cardholder	data	throughout	the	transaction

process.

The	PCI	HSM	Security	Requirements	document
describes	the	minimum	security	requirements	for

compliant	HSMs.

ONE	DOES	NOT	SIMPLY
Implement	serious	crypto

without	an	HSM

SECURITY	REQUIREMENTS

GENERAL	INFORMATION
As	HSMs	are	used	in	critical	applications	and
infrastructures,	different	standards	have	been
proposed	to	evaluate	their	security.

Major	standards:

FIPS	140-2
Common	Criteria

FIPS	140-2
Federal	Information	Processing	Standards
Publication	140-2
...or	otherwise,	the	US	stuff
Issued	at	2001	by	the	National	Institute	of
Standards	and	Technology,	updated	at	2002
Most	widely	used	standard
Supersedes	FIPS	140-1
Will	be	superseded	by	FIPS	140-3...	when	it	gets
released!

FIPS	140-2
Defines	4	different	security	levels:

Level	1:	Lowest	security	level.	At	least	one
approved	algorithm	must	be	implemented	and
there	are	no	physical	security	controls.
Level	2:	Level	1	plus	physical	security	controls.
Cryptographic	keys	and	Critical	Security
Parameters	(CSPs)	are	protected	with	tamper-
evident	coatings	or	seals

FIPS	140-2
Defines	4	different	security	levels:

Level	3:	Level	2	with	harder	physical	security
controls.	Keys	and	CSPs	are	deleted	if	potential
breach	is	detected.
Level	4:	Level	3	with	more	strict	physical	security
controls	to	make	the	HSM	usable	in	physically
unprotected	environments.

FIPS	140-2
FIPS	140-2	validation	happens	at	the	Cryptographic
Module	Testing	Laboratories	which	are	accredited
by	the	National	Voluntary	Laboratory	Accreditation
Program	as	part	of	the	Cryptographic	Module

Validation	Program.

Currently	22	laboratories	have	been	accredited	to
perform	FIPS	140-2	validation.

COMMON	CRITERIA
ISO	Standard
The	EU	stuff
Has	Evaluation	Assurance	Levels	(EALs)	similar	to
FIPS	140-2	levels
In	addition	there	are	Protection	Profiles	(PP),
Security	Targets	(ST),	etc

COMMON	CRITERIA
Interesting	fact:

In	the	PKI	world	the	standard	is	EAL4+
EAL4	is	Methodically	Designed,	Tested	and
Reviewed
Best	security	practices	should	be	used	during
design	and	test...	Lets	see	how	it	goes!

THE	UTIMACO	HSM

VARIOUS	MODELS	OF	THE
CRYPTOSERVER
SecurityServer	Se	Gen2
SecurityServer	CSe
SecurityServer	Se	(End	of	line)
TimestampServer

SPECIFICATIONS
FIPS	140-2	Level	3	certification	(some	have	higher
levels	in	specific	areas,	such	as	physical	security)
Available	as	both	PCIe	cards	and	Network
Attached	Appliances
Support	for	RSA,	DSA,	ECDSA	(NIST	and	Brainpool
curves),	DH,	ECDH,	AES,	DES,	3DES,	SHA1,	SHA2,
SHA3,	RIPEMD,	etc
Depending	on	your	license	you	get	more
transactions	per	second

THE	HARDWARE
Network	HSMs	are	Linux	boxes	with	a	PCIe	HSM.
There	is	a	physical	protection	layer	and	a	battery
that	helps	erase	the	contents	of	the	memory	in
case	of	breach	when	the	HSM	is	powered	off
Sensors	can	detect	changes	in	temperature,
voltage,	power	supply	in	general	and	tampering
of	the	protecting	foil

THE	HARDWARE
Every	PCIe	HSM	contains:

A	Texas	Instruments	TMS320C64x	DSP	that
performs	all	cryptographic	operations
A	hardware	True	Random	Number	Generator
(TRNG)	and	a	Deterministic	Random	Bit
Generator	(DRBG)
A	Key-RAM	which	contains	the	Device	Key	and	in
case	of	attack	gets	deleted

DEVICE	KEY
A	single	key	created	when	the	HSM	is	brought
into	operation
Cannot	be	extracted,	exported,	imported,	or	in
any	way	manipulated
Encrypts	all	other	cryptographic	keys	and	critical
security	parameters

MASTER	BACKUP	KEYS
256	bit	AES	or	128	bit	(?)	3DES	Key
Used	to	encrypt	backups	of	cryptographic	keys
Can	be	split	into	many	shares	using	an	n	out	of
m	scheme	(XOR	for	2	out	of	2,	Shamir's	Secret
Sharing	otherwise)
Keys	inside	the	HSM	are	not	encrypted	using	the
MBK	but	using	the	Device	Key

TOOLS
csadm:	Command	line	tool	to	manage	both	PCIe
and	Network	HSMs
p11tool2:	Command	line	tool	to	use	the	PKCS#11
API
cxitool:	Command	line	tool	to	use	the	CXI	API
cat	/	p11cat:	Java	versions	of	the	above

SIMULATOR
A	simulator	exists	which	runs	its	own	firmware
too
As	we'll	see	later	on,	this	will	be	very	useful!

USERS
Every	user	has:

An	authentication	method:	RSA	signature	(in	soft
form	or	in	smartcards),	ECDSA	signature	(in	soft
form),	HMAC	password
Permissions:	The	value	0,	1	or	2	at	8	different
permission	groups
Flags,	attributes,	etc

PERMISSIONS
To	complete	a	task	you	need	all	logged	in	users
to	add	up	to	a	certain	permission	level	at	a
certain	group.
For	example,	to	add	a	user	you	need	all	logged	in
users'	permissions	to	add	up	to	2	at	group	7	(no
more,	no	less).

COMMUNICATION
PROTOCOL

Custom	communication	protocol	with	the	PCIe
HSM
Network	HSMs	listen	at	both	a	TCP	and	a	UDP
port	and	send	everything	received	to	the	internal
PCIe	card
No	public	specification	available
AES256	encrypted	communication	with	unique
session	keys	and	MAC

THE	UTIMACO	FIRMWARE

FORMAT
A	single	blob	in	a	custom	.mpkg	format
Both	FIPS	and	non-FIPS	versions
After	reversing	much	of	the	format	I	found	out
that	csadm	has	an	option	to	unpack	mpkg	files
Lesson	learned:	RTFM!
After	unpacking	you	get	a	number	of	.mtc	files

SAMPLE	FIRMWARE
SecurityServer-Se-Series-4.01.0.5.mpkg	→

adm_3.0.18.1_c50.mtc
aes_1.3.7.0_c50.mtc
asn1_1.0.3.4_c50.mtc
bcm_1.0.2.0_c50.mtc
cmds_3.5.1.6_c50.mtc
cxi_2.1.11.3_c50.mtc
db_1.3.1.1_c50.mtc
dsa_1.2.2.1_c50.mtc
eca_1.1.7.6_c50.mtc
ecdsa_1.1.8.7_c50.mtc
hash_1.0.10.1_c50.mtc

hce_2.2.2.1_c50.mtc
lna_1.2.3.4_c50.mtc
mbk_2.2.4.4_c50.mtc
ntp_1.2.0.7_c50.mtc
pp_1.2.5.1_c50.mtc
sc_1.2.0.3_c50.mtc

smos_3.3.4.2_c86.mtc
util_3.0.3.0_c50.mtc
vdes_1.0.9.1_c50.mtc
vrsa_1.3.0.6_c50.mtc

MTC	FILES
Individual	firmware	modules

Each	one	of	them	seems	to	be	associated	with	a
specific	function:

adm_3.0.18.1_c50.mtc	→	Administration
functions
aes_1.3.7.0_c50.mtc	→	AES	implementation
asn1_1.0.3.4_c50.mtc	→	ASN.1
encoding/decoding	(this	is	the	X.509	world!)

MTC	FILES

Let's	use	binwalk!

MTC	FILES

Four	copyright	strings	inside	and	one	unix	path	→
WTF	guys,	use	a	standard	format!

	$	binwalk	adm_3.0.18.1_c50.mtc	

	DECIMAL							HEXADECIMAL					DESCRIPTION
	--
	53925									0xD2A5										Copyright	string:	"Copyright	(c)	1996-2014	Texas	Instruments	Incorporated"
	54123									0xD36B										Copyright	string:	"Copyright	(c)	1996-2014	Texas	Instruments	Incorporated"
	55658									0xD96A										Unix	path:	/tmp/TI_MKLIBqpFZmO/OBJ/memset.asm:CL2:1:1398463752
	55816									0xDA08										Copyright	string:	"Copyright	(c)	1996-2014	Texas	Instruments	Incorporated"
	55985									0xDAB1										Copyright	string:	"Copyright	(c)	1996-2014	Texas	Instruments	Incorporated"
												

MTC	FILES

Hexdump	to	the	rescue!

MTC	FILES

A	header	at	the	begining	with	a	description!
".text"	and	".data"	seem	to	be	names	of	sections
Maybe	some	modified	standard	format???

	$	hexdump	-C	adm_3.0.18.1_c50.mtc
	00000000		4d	54	43	48	00	01	2d	e0		01	00	00	00	01	02	01	00		|MTCH..-.........|
	00000010		00	00	00	18	00	00	00	00		4d	4d	43	48	00	01	2d	c8		|........MMCH..-.|
	00000020		01	01	00	00	a3	07	55	2e		d3	44	d5	ba	41	44	4d	00		|......U..D..ADM.|
	00000030		00	00	00	00	00	00	00	00		00	00	00	87	03	00	12	01		|................|
	00000040		41	64	6d	69	6e	69	73	74		72	61	74	69	6f	6e	20	4d		|Administration	M|
	00000050		6f	64	75	6c	65	00	00	00		00	00	00	00	00	00	00	00		|odule...........|

	00000110		00	00	2e	74	65	78	74	00		00	00	80	0f	00	00	80	0f		|...text.........|
	00000120		00	00	e0	bf	00	00	8e	11		00	00	5e	e2	00	00	00	00		|..........^.....|
	00000130		00	00	b6	03	00	00	00	00		00	00	20	05	00	00	00	00		|..........|
	00000140		00	00	2e	64	61	74	61	00		00	00	60	cf	00	00	60	cf		|...data...`...`.|
	00000150		00	00	00	00	00	00	00	00		00	00	00	00	00	00	00	00		|................|
	00000160		00	00	00	00	00	00	00	00		00	00	80	00	00	00	00	00		|................|
												

MTC	FILES
Challenge	accepted!

Let's	reverse	the	administration	tool	that	extracted
the	files!

MTC	FILES
Fast	forward	many	hours...

	$	strings	csadm	|	grep	COFF
	CS2-COFF
	COFF	section
												

MTC	FILES
COFF	files!
But	why	didn't	binwalk	recognize	this?
The	answer	is	simple:	someone	thought	it	would
be	nice	to	change	the	standard	COFF	format	to
add	their	own	fields	over	there!

MTC	FILES

Now	what???

MTC	FILES
We	first	identify	the	length	of	the	section	header
by	calculating	differences	between	names
We	then	fit	the	records	we	found	to	the	standard
section	header
Next	step	is	finding	out	how	much	the	COFF	file
header	was	messed	up	(you	thought	they	would
mess	with	this	one?)
And	we	fit	this	header	to	the	standard	COFF	file
header

MTC	FILES

We	can	now	extract	the	COFF	file!

Now	what?

MTC	FILES

MTC	FILES

MTC	FILES

MTC	FILES
(Insert	multiple	slides	with	Picard	facepalms	and

radare2,	binutils,	etc)

(Ok,	actually	TI	has	a	disassembler	but	it's
unusable)

MTC	FILES
Challenge	accepted!

Let's	write	our	own	disassembler!

THE	TMS320C64X	DSP
Steps	to	write	our	own	disassembler:

Study	the	architecture	of	the	DSP
Study	the	memory	organization
Study	the	ABI
Find	potential	frameworks	we	can	use
Write	the	actual	disassembler

THE	ARCHITECTURE
An	'exotic'	architecture	compared	to	x86,	x86_64,
ARM,	MIPS,	etc
16	bit	Very	Long	Instruction	Word	(VLIW)	DSP
2x4	Functional	Units	(.L1,	.S1,	.M1,	.D1,	.L2,	.S2,
.M2,	.D2),	each	one	with	it's	own	assembly
instructions
Ability	to	execute	multiple	instructions	in	parallel
at	different	Functional	Units
2	Register	Files	(A	and	B)
Crosspath	to	transfer	data	between	A	and	B

BLOCK	DIAGRAM

DATA	PATHS
Each	data	path	contains:

1	ALU	(the	.L	functional	unit)
1	Shifter	(the	.S	functional	unit)
1	Multiplier	(the	.M	functional	unit)
1	Adder/Subtractor,	also	used	for	address
generation	(the	.D	functional	unit)
1	Register	File	with	32	32-bit	registers

There	is	also	one	cross	path	for	transfers	between
data	path	A	and	B

PARALLEL	EXECUTION
8	execution	units	can	execute	up	to	8	commands
in	parallel
At	any	single	time	only	one	command	can	use
the	cross	path
Instructions	are	fetched	in	fetch	packets	(FP)	of	8
words
You	cannot	execute	instructions	in	two	different
FPs	in	parallel

REGISTERS
General	purpose	registers	A0-A31	and	B0-B31
Instructions	operate	on	8,	16,	32	or	40	bit	data
For	40	bit	operations	one	register	from	the	even
register	file	is	used,	together	with	the	relevant
register	from	the	odd	register	file,	e.g.	A11:A10	or
B25:B24
There	are	instructions	that	operate	on	packed
data	(e.g.	4	8-bit	quantities	at	a	single	register)
64	bit	loads	and	stores	can	be	performed	in	a
single	operation

REGISTERS
A0-A2,B0-B2	are	also	conditional	registers
All	instructions	can	take	a	conditional	prefix,
those	instructions	will	be	executed	only	if	the
corresponding	register	is	zero	or	non-zero

Control	Register	File:	Control	registers	such	as:

PCE1:	Program	Counter,	E1	phase
ICR:	Interrupt	Clear	Register
CSR:	Control	Status	Register

INSTRUCTION	FORMAT
Sample	instructions:

										SHR	.S1		A1,	10,	A2

										MV		.S1X	B0,	A0

										AND	.D1		A0,	A1,	A2
	||							AND	.D2		B0,	B1,	B2

				[A0]	ADD	.L1		A1,	A2,	A3
	||	[!A0]	ADD	.L2		B1,	B2,	B3
												

DELAY	SLOTS
Most	instructions	are	executed	at	a	single	cycle
...but	not	all	of	them!
Some	multi-cycle	instructions	read	the	source
operands	at	one	cycle	and	write	the	result	at	a
different	one
Branches	read	the	jump	target	at	cycle	i	and
jump	to	it	at	cycle	i+5
In	the	mean	time,	if	the	jump	target	was	a
register,	its	value	may	have	changed

DELAY	SLOTS

REVERSING	TOOLS

Still	wondering	why	no	tools	are	available???

MEMORY	ORGANIZATION
32	bit,	byte	addressable	address	space

On-chip	memory:

Organized	in	data	and	program	spaces
Two	64	bit	internal	ports	to	access	data	memory
One	256	bit	internal	port	to	access	program	memory

Off-chip	memory:

Data	and	program	spaces	are	unified	via	the	External
Memory	InterFace	(EMIF)
EMIF	is	32	bit

ABI	-	CALLING
CONVENTIONS

No	stack	exists	(stack	as	in	x86	stack)
To	call	a	function	you	need	to	calculate	the	return	address	by
adding	PC	to	the	relative	offset	of	the	return	address	using	a
special	assembly	instruction	(ADDKPC)
To	return	you	need	to	jump	to	the	register	where	the	previous
value	has	been	saved
ABI	specifies	this	register	should	be	B3
The	displacement	at	a	branch	instruction	is	a	21	bit	word
offset.	If	the	destination	is	unreachable,	the	linker	must
generate	a	trampoline

ABI	-	CALLING
CONVENTIONS

										B							.S1		func
										AND					.D1		A0,	A1,	A2
	||							AND					.D2		B0,	B1,	B2
										ADDKPC		.S2		returnhere,	B3
										ADD					.D1		A2,	1,	A3
										MV						.D2		B3,	B0
	||							MV						.D1		A3,	A0
										OR						.S2X	B0,	A0,	B4
	returnhere:
										MVK					.S1		10,	A0
	...

	func:
	...
										B							.S1		B3
												

ABI	-	REGISTERS
12	callee-saved	registers	(A10-A15,	B10-B15)
A15	acts	as	Frame	Pointer
B14	acts	as	Data	Page	Pointer
B15	acts	as	Stack	Pointer
B3	keeps	the	return	address

ABI	-	ARGUMENT	PASSING
First	10	arguments	are	passed	in	registers
If	an	argument	is	64	bits,	a	register	pair	is	used
That	makes	us	a	total	of	20	registers	for
argument	passing
32	bit	values	are	returned	in	A4,	64	bit	values	in
A5:A4,	and	bigger	values	are	returned	by
reference

IMPLEMENTING	THE
DISASSEMBLER

We	know	the	architecture,	the	memory	layout	and
the	ABI.	Now	what???

FRAMEWORK	CHOICES
Binutils:	too	much	work
LLVM:	still	too	much	work
Radare2:	Potential	choice
Capstone:	Potential	choice,	much	more	attractive
for	implementing	new	architectures

THE	CAPSTONE
DISASSEMBLY	FRAMEWORK

THE	CAPSTONE
DISASSEMBLY	FRAMEWORK
Written	in	pure	C
Open	source
Based	on	LLVM
Bindings	for	many	other	programming	languages
No	documentation	exists	on	adding	a	new
architecture,	but	it	should	be	fairly	easy

WHERE	DO	WE	START?
Clone	the	project
See	how	other	architectures	are	implemented
Try	to	implement	our	own

ARCHITECTURE
IMPLEMENTATION

A	TableGen	(.td)	file	with	the	architecture	and
instructions	description	helps	generate:

Register/Instruction/Subtarget	Info	Files
Disassembler	Tables
Assembly	Writer

But	there's	more	needed!

THE	TABLEGEN	FILE
Let's	first	generate	this	and	we'll	see	about	the

rest...

THE	TABLEGEN	FILE
FORMAT
A	file	defining:

Targets/Subtargets
Processors
Instruction	Set
Registers
Calling	Conventions

WHAT'S	ACTUALLY
NEEDED?

In	our	case	we	don't	need:

Calling	conventions	-	LLVM	needs	them	for	the
compilation	part	but	we'll	just	create	a
disassembler
The	instruction	selection	pattern	-	LLVM	needs	it
to	select	the	appropriate	instruction	when
compiling
Many	flags

WHAT'S	ACTUALLY
NEEDED?

What	we	will	need	is:

Register	description

Instruction	description	with:

Hardware	encoding
Input/output	registers
Assembly	string

HOW	DO	WE	DEFINE
REGISTERS?

Simple,	we	define	a	register	class	and	then
instances	for	all	registers!

	class	TMS320C64xReg<string	n,	bits<5>	num,	bit	file,
									bits<3>	condition	=	7>	:	Register<n>	{
					let	HWEncoding{15-5}	=	0;
					let	HWEncoding{4-0}	=	num;
					field	bit	File	=	file;
					field	bits<3>	Condition	=	condition;
					let	Namespace	=	"TMS320C64x";
	}
	def	A0		:	TMS320C64xReg<"A0",		0,		0,	6>,	DwarfRegNum<[0]>;
	...
	def	B31	:	TMS320C64xReg<"B31",	31,	1>,	DwarfRegNum<[63]>;
												

HOW	DO	WE	DEFINE
INSTRUCTIONS?
More	difficult
We	have	to	define	operands
Then	instruction	classes
And	if	needed	multiclasses

HOW	DO	WE	DEFINE
OPERANDS?

For	every	operand	we	need	to	create	a	decoder,	an
encoder	and	maybe	a	print	method!

	def	memop	:	Operand<i32>,	PatLeaf<(imm),
									[{	return	isInt<15>(N->getZExtValue());	}]>
	{
					let	DecoderMethod	=	"DecodeMemOperand";
					let	EncoderMethod	=	"EncodeMemOperand";
					let	PrintMethod	=	"printMemOperand";
	}
												

HOW	DO	WE	DEFINE
INSTRUCTION	CLASSES?

	//	Superclass
	class	TMS320C64xInst<dag	outops,	dag	inops,	string	asmstr,
									list<dag>	pattern>	:	Instruction	{
					field	bits<32>	Inst;
					field	bits<32>	SoftFail	=	0;
					bits<3>	cond;
					bit	condzero;
					bit	side;
					bit	parallel;

					let	OutOperandList	=	outops;
					let	InOperandList	=	!con(inops,	(ins	condreg:$cond,
									condregzero:$condzero,	sideop:$side,
									parallelop:$parallel));
					let	AsmString	=	asmstr;
					let	Pattern	=	pattern;
												

HOW	DO	WE	DEFINE
INSTRUCTION	CLASSES?

					let	Inst{31-29}	=	cond;
					let	Inst{28}	=	condzero;
					let	Inst{1}	=	side;
					let	Inst{0}	=	parallel;
					let	Size	=	4;
					let	isPredicable	=	1;
					let	hasSideEffects	=	0;
					let	Namespace	=	"TMS320C64x";
	}
												

HOW	DO	WE	DEFINE
INSTRUCTION	CLASSES?

	class	TMS320C64xInstD1<bits<6>	opVal,	dag	outops,	dag	inops,
									string	asmstr,	list<dag>	pattern>	:
									TMS320C64xInst<outops,	inops,	asmstr,	pattern>	{
					bits<5>	dst;
					bits<5>	src2;
					bits<5>	src1;
					bits<6>	op	=	opVal;

					let	Inst{27-23}	=	dst;
					let	Inst{22-18}	=	src2;
					let	Inst{17-13}	=	src1;
					let	Inst{12-7}	=	op;
					let	Inst{6-2}	=	0b10000;
	}
												

HOW	DO	WE	DEFINE
INSTRUCTION	CLASSES?

	class	TMS320C64xInstD2<bits<4>	opVal,	dag	outops,	dag	inops,
									string	asmstr,	list<dag>	pattern>	:
									TMS320C64xInst<outops,	!con(inops,
									(ins	crosspathopx2:$crosspath)),	asmstr,	pattern>	{
					bits<5>	dst;
					bits<5>	src2;
					bits<5>	src1;
					bit	crosspath;
					bits<4>	op	=	opVal;

					let	Inst{27-23}	=	dst;
					let	Inst{22-18}	=	src2;
					let	Inst{17-13}	=	src1;
					let	Inst{12}	=	crosspath;
					let	Inst{9-6}	=	op;
					let	Inst{11-10}	=	0b10;
					let	Inst{5-2}	=	0b1100;
	}
												

HOW	DO	WE	DEFINE
INSTRUCTION
MULTICLASSES?

	multiclass	TMS320C64xInstD1_ri<bits<6>	opVal1,	bits<6>	opVal2,
									string	asmstr1,	string	asmstr2>	{
					def	_d1_rrr	:	TMS320C64xInstD1<opVal1,	(outs	GPRegs:$dst),
									(ins	GPRegs:$src2,	GPRegs:$src1),
									asmstr1,	[]>;
					def	_d1_rir	:	TMS320C64xInstD1<opVal2,	(outs	GPRegs:$dst),
									(ins	GPRegs:$src2,	ucst5:$src1),
									asmstr2,	[]>;
	}
												

HOW	DO	WE	DEFINE
INSTRUCTIONS?

	defm	ADD	:	TMS320C64xInstD1_ri<0b010000,	0b010010,
					"ADD\t$src2,	$src1,	$dst",	"ADD\t$src2,	$src1,	$dst">;

	def	ADD_d2_rrr	:	TMS320C64xInstD2<0b1010,
					(outs	GPRegs:$dst),
					(ins	GPRegs:$src2,	GPRegs:$src1),
					"ADD\t$src1,	$src2,	$dst",
					[]>;
												

ARE	WE	DONE?
Not	even	close
We	need	to	implement	code	for
encoding/decoding/printing	operands	(real	and
'virtual'	ones	such	as	parallel	and	crosspath)
We	need	to	implement	instruction	mappings
We	need	to	add	supporting	code	for	the
architecture
We	need	to	add	at	least	python	bindings

LETS	FINISH	THIS	THING!

PROBLEMS	FACED
The	converter	was	not	the	LLVM	one	but	a	not-
disclosed	version	that	produces	C	code	instead	of	C++

No	problem,	converted	the	original	LLVM	converter
to	produce	output	compatible	with	Capstone

Decoding	of	all	fields	must	be	done	manually

Still	no	problem,	we	have	all	the	documentation	so	it
can	be	done

PROBLEMS	FACED
Instructions	that	use	PC	relative	addressing	must	be
handled	specially

We'll	just	have	to	keep	the	PC	and	make	all
calculations	correctly
During	coding	the	TMS320C64x	architecture
support,	PC	relative	addressing	bugs	were	found	at
other	architectures

PROBLEMS	FACED
Branches	must	be	handled	with	care	since	they	are
relative	to	the	first	instruction	in	the	fetch	packet

Again,	we'll	have	to	keep	the	PC	and	based	on	the
implementation	of	the	instruction	dispatch	unit	find
out	the	first	instruction	in	each	fetch	packet

The	parallel	bit	is	not	set	at	the	same	instruction	but	at
the	previous	one

Difficult,	but	can	be	done	with	some	post-processing

CONGRATULATIONS!

We	have	a	disassembler	we	can	use!

REVERSING	THE	FIRMWARE
How	do	we	proceed?

We	can	disassemble	everything
But	we	have	no	symbols
And	we	have	thousands	of	lines	of	strange
assembly	code

REVERSING	THE	FIRMWARE

Let's	check	the	simulator	firmware!

THE	SIMULATOR	FIRMWARE
Extract	the	MTC	files	and	then	the	internal	binary
At	the	actual	firmware	this	was	a	modified	COFF
At	the	simulator	firmware	it's...	a	DLL!

REVERSING	THE	FIRMWARE

We've	got	symbols!

WHAT	NOW?
Correlate	string	references	in	both	firmwares,
same	strings	at	same	functions	(easy)
Check	out	branches	from	the	same	functions
(harder)
Fix	the	rest	by	hand	(much	harder)
Read	the	code	and	profit!

CAN	WE	PROFIT?
These	products	are	methodically	tested	and	the
best	security	practices	are	used	during	design
Bugs	should	not	exist
At	least,	simple	and	easy	to	identify	bugs	should
be	eliminated
Let's	move	on	to	an	example	of	security	checks...

EXTRACTION	OF	MBK
DATABASE	BACKUP

	000009d8			00564d42											.word	0x00564d42		//	'\x00VMB'
	000009dc			4b310073											.word	0x4b310073		//	'K1\x00s'

	_adm_ext_list_db_search_keys:
	...
	||								MVK.S1								0x09d9,A5
	||								ADD.L1X							A4,B4,A3
	||								ADD.D2								B15,0x17,B4
											MVKH.S1							0x0000,A5
											SUB.L1								A5,0x1,A4
											LDB.D1T1						*++A4[1],A0
											LDBU.D2T2					*++B4[1],B5
											MVK.L1								0,A1
											NOP											2
											EXTU.S1							A0,24,24,A5
	||	[A0]		SUB.L1								A3,0x1,A1
				[A0]		SUB.L1								A3,0x1,A3
											CMPEQ.L2X					B5,A5,B0
				[!B0]		MVK.L1								0,A1
	||	[!B0]		B.S2										0x003010
	...
												

EXTRACTION	OF	MBK
DATABASE	BACKUP

Security	controls:	check	if	string	starts	with	'VMBK1',
'MBK'	or	'session_obj'	to	protect	sensitive	databases
If	tests	pass,	then	open	the	database	with	the	common
open	function

What's	the	argument	to	this	function?

The	name	of	the	database,	such	as	CXIKEY.db
Possibly	prefixed	with	the	location,	such	as
FLASH\CXIKEY.db

EXTRACTION	OF	MBK
DATABASE	BACKUP
What	if	we	extract	FLASH\VMBK1.db?

Sometimes	one	facepalm	is	not	enough...

WHAT	ABOUT	OTHER
BUGS?

All	the	code	has	the	same	quality
Similar	logical	errors	can	be	found
Haven't	searched	for	buffer	overflows	yet

DISCLOSURE
Contacted	Utimaco	at	10/03/2016
Managed	to	receive	PGP	keys	and	certificate	at
19/5/2016
Sent	details	at	20/5/2016
Received	final	official	answer	at	17/6/2016
Got	access	to	an	HSM	with	updated	firmware	for
testing	at	20/10/2016

DOWNLOADS
Reversing	tools:	https://github.com/fotisl/utimaco
Capstone:
https://github.com/aquynh/capstone/tree/tms320c64x

QUESTIONS???

