
Teaching Old Shellcode
New Tricks
REcon Brussels 2017

@midnite_runr

C’est Moi

• US Marine (out in 2001)

• Wrote BDF/BDFProxy

• Co-Authored Ebowla

• Found OnionDuke

• Work @ Okta

• Twitter: @midnite_runr

Why This Talk

• It’s fun

• It’s time to update publicly available shellcode

Part 1

Stephen Fewer’s Hash
API

• SFHA or Hash API or MetaSploit Payload Hash

• Introduced: 8/2009

• Uses a 4 byte hash to identify DLL!WinAPI in EAT

• JMPs to the WinAPI ; return to payload

• Some code borrowed from M.Miller’s 2003
Understanding Windows Shellcode paper

http://blog.harmonysecurity.com/2009/08/calling-api-functions.html

http://blog.harmonysecurity.com/2009/08/calling-api-functions.html

Typical SHFA Based
Payload

[—SHFA—][the actual payload logic]

Typical SHFA Based
Payload

[—SHFA—][the actual payload logic]

1

Typical SHFA Based
Payload

[—SHFA—][the actual payload logic]

1
2

Typical SHFA Based
Payload

[—SHFA—][the actual payload logic]

1
2

3

Typical SHFA Based
Payload

[—SHFA—][the actual payload logic]

[some winAPI]

1
2

3

Typical SHFA Based
Payload

[—SHFA—][the actual payload logic]

[some winAPI]

1
2

3 4

Typical SHFA Based
Payload

[—SHFA—][the actual payload logic]

[some winAPI]

1
2

3 4

5, Continue to 2 until done

Defeating SFHA

• EMET

• Piotr Bania Phrack 63:15 // HAVOC - POC||GTFO
12:7

• CFG/RFG

EMET Caller/EAF(+)
• EAF(+)

• Introduced: 2010/2014(+)

• Protect reading KERNEL32/NTDLL and
KERNELBASE(+)

• Caller

• 2013

• Block ret/jmp into a winAPI (Anti/rop) for
critical functions

EMET is EOL

• Supported through July 31, 2018

• Still works**

** Depends on threat model

Tor Browser Exploit
vs EMET

Bypassing EMET
EAF(+)

• 2010: Berend-Jan Wever (Skypher Blog) - ret-2-
libc via ntdll

• 1/2012 Piotr Bania - Erase HW Breakpoints via
NtContinue

• 9/2014 - Offensive Security - EAF+ bypass via
EMET function reuse calling ZwSetContextThread
directly

http://web.archive.org/web/20101125174240/http://skypher.com/index.php/2010/11/17/bypassing-eaf/
http://piotrbania.com/all/articles/anti_emet_eaf.txt

https://www.offensive-security.com/vulndev/disarming-emet-v5-0/

http://web.archive.org/web/20101125174240/http://skypher.com/index.php/2010/11/17/bypassing-eaf/
http://piotrbania.com/all/articles/anti_emet_eaf.txt

Bypassing EMET
Caller

2/2014 - Jared Demot - Demo’ed a payload that
directly used LoadLibraryA (LLA)

https://bromiumlabs.files.wordpress.com/2014/02/bypassing-emet-4-1.pdf

https://bromiumlabs.files.wordpress.com/2014/02/bypassing-emet-4-1.pdf

IAT Based Payloads
in BDF

• May 30, 2014

• Added IAT based payloads/shellcode to BDF

• Directly used IAT API thunks

• This bypassed EMET Caller/EAF(+) checks

Position Independent
IAT Shellcode

• Dec, 2014

• 12/2003 - Skape (M. Miller) Understanding Windows
Shellcode

• 2005 - Piotr Bania - IAT Parser - Phrack 63:15

http://www.hick.org/code/skape/papers/win32-shellcode.pdf

http://phrack.org/issues/63/15.html

http://www.hick.org/code/skape/papers/win32-shellcode.pdf
http://phrack.org/issues/63/15.html

Emailed the EMET Team

¯_()_/¯

IAT Based Stub

• LoadLibraryA(LLA)/GetProcAddress(GPA) in Main
Module

https://gist.github.com/secretsquirrel/2ad8fba6b904c2c952b8

https://gist.github.com/secretsquirrel/2ad8fba6b904c2c952b8

IAT Based Stub(s)

• LoadLibraryA/GetProcAddress in Main Module

• LoadLibraryA/GetProcAddress in a loaded Module
(dll)

GetProcAddress Only
Stub

GetProcAddress Only
Stub

GetProcAddress LoadLibraryA

GetProcAddress Only
Stub

GetProcAddress LoadLibraryA

LoadLibraryA.Handle = GetProcAddress(Kernel32.addr, ‘LoadLibraryA’)

GetProcAddress Only
Stub

GetProcAddress LoadLibraryA

LoadLibraryA.Handle = GetProcAddress(Kernel32.addr, ‘LoadLibraryA’)

Push eax; LLA is in EAX
mov ebx, esp; mov ptr to LLA in ebx

…
call [ebx]

IAT Based Stub(s)

• LoadLibraryA(LLA)/GetProcAddress(GPA) in main
module

• LLA/GPA in a loaded module (dll)

• GPA to LLA in main module

• GPA to LLA in loaded module

System Binaries/DLLs with
LLAGPA or GPA in IAT

LLAGPA GPA

XPSP3 1300 5426

VISTA 645 26855

WIN7 675 48383

WIN8 324 31158

WIN10 225 50522

FireEye Flash Malware w/
EMET Bypass Jun 06, 2016

https://www.fireeye.com/blog/threat-research/2016/06/angler_exploit_kite.html

https://www.fireeye.com/blog/threat-research/2016/06/angler_exploit_kite.html

POC: https://github.com/ShellcodeSmuggler/IAT_POC

https://www.okta.com/blog/2016/07/the-emet-serendipity-emets-ineffectiveness-against-non-exploitation-uses/

https://github.com/ShellcodeSmuggler/IAT_POC

What now?

• More payloads

• Many MetaSploit payloads were based off of Hash
API stub

• Much work

• Some ideas

Part II

Two Ideas

• Remove SFHA and replace it with X

• Build something to rewrite the payload logic for
use with an IAT parsing stub

REWRITE ALL THE THINGS

MSF Winx86 Payloads
Follow a pattern

https://github.com/rapid7/metasploit-framework/blob/master/external/source/shellcode/windows/x86/src/block/block_recv.asm

https://github.com/rapid7/metasploit-framework/blob/master/external/source/shellcode/windows/x86/src/block/block_recv.asm

Workflow

• Take Input via stdin or from file

• Disassemble

• Capture blocks of instructions

• Capture API calls

• Capture control flow between two locations

• Protect LLA/GPA registers from being clobbered

LOE

LOE

• Five days straight at about 12-15 hour days

LOE

• Five days straight at about 12-15 hour days

• When I solved one problem, 2-3 more appeared

LOE

• Five days straight at about 12-15 hour days

• When I solved one problem, 2-3 more appeared

• There is a point where a manual rewrite would
have been easier - I crossed it

LOE

• Five days straight at about 12-15 hour days

• When I solved one problem, 2-3 more appeared

• There is a point where a manual rewrite would
have been easier - I crossed it

• 🔥BURN IT DOWN🔥

Next idea

Next idea

[—SFHA—]

Next idea

[the actual payload logic][—SFHA—]

Next idea

[the actual payload logic]

Next idea

[the actual payload logic][IAT Stub]

Next idea

[the actual payload logic][IAT Stub] [offset table]

Some requirements

• Support Read/Execute Memory

• Try to keep it small

• Support any Metasploit Shellcode that uses SFHA

Workflow
• Take Input via stdin or from file

• Disassemble

• Capture blocks of instructions

• Capture API calls

• Build a lookup/offset table

• Find an appropriate IAT for the EXE

• OUTPUT

Offset Table
Approach

Offset Table
Approach

[876f8b31][XX][XX][a2a1de0][XX][XX][9dbd95a6] [XX][XX]

Offset Table
Approach

[876f8b31][XX][XX][a2a1de0][XX][XX][9dbd95a6] [XX][XX]
DLL API

Offset Table
Approach

b'RtlExitUserThread\x00ExitThread\x00kernel32\x00WinExec\x00GetVersion\x00ntdll\x00'

[876f8b31][XX][XX][a2a1de0][XX][XX][9dbd95a6] [XX][XX]
DLL API

Offset Table
Approach

b'RtlExitUserThread\x00ExitThread\x00kernel32\x00WinExec\x00GetVersion\x00ntdll\x00'

[876f8b31][XX][XX][a2a1de0][XX][XX][9dbd95a6] [XX][XX]
DLL API

Offset Table
Approach

b'RtlExitUserThread\x00ExitThread\x00kernel32\x00WinExec\x00GetVersion\x00ntdll\x00'

[876f8b31][XX][XX][a2a1de0][XX][XX][9dbd95a6] [XX][XX]
DLL API

Offset Table
Approach

b'RtlExitUserThread\x00ExitThread\x00kernel32\x00WinExec\x00GetVersion\x00ntdll\x00'

[876f8b31][XX][XX][a2a1de0][XX][XX][9dbd95a6] [XX][XX]
DLL API

Offset Table
Approach

b'RtlExitUserThread\x00ExitThread\x00kernel32\x00WinExec\x00GetVersion\x00ntdll\x00'

[876f8b31][XX][XX][a2a1de0][XX][XX][9dbd95a6] [XX][XX]
DLL API

Offset Table
Approach

b'RtlExitUserThread\x00ExitThread\x00kernel32\x00WinExec\x00GetVersion\x00ntdll\x00'

[876f8b31][XX][XX][a2a1de0][XX][XX][9dbd95a6] [XX][XX]
DLL API

Offset Table
Approach

b'RtlExitUserThread\x00ExitThread\x00kernel32\x00WinExec\x00GetVersion\x00ntdll\x00'

[876f8b31][XX][XX][a2a1de0][XX][XX][9dbd95a6] [XX][XX]
DLL API

The new workflow

[IAT Stub][Lookuptable][the actual payload logic]

The new workflow

[IAT Stub][Lookuptable][the actual payload logic]

1

The new workflow

[IAT Stub][Lookuptable][the actual payload logic]

1
2

The new workflow

[IAT Stub][Lookuptable][the actual payload logic]

[some winAPI]

1
2

The new workflow

[IAT Stub][Lookuptable][the actual payload logic]

[some winAPI]

1
2

3

The new workflow

[IAT Stub][Lookuptable][the actual payload logic]

[some winAPI]

1
2

3
4

The new workflow

[IAT Stub][Lookuptable][the actual payload logic]

[some winAPI]

1
2

3
5

4

The new workflow

[IAT Stub][Lookuptable][the actual payload logic]

[some winAPI]

1
2

3
5

6, Continue to 2 until done

4

LOE

• The initial POC took < 12 hours

• Adding the workflow and stubs:12 hours

• Finalizing the tool: ಠ_ಠ

• But I’m happy 🤓

About those API
Hashes

About those API
Hashes

• They are now meaningless

About those API
Hashes

• They are now meaningless

• AVs depend on them for signatures

About those API
Hashes

• They are now meaningless

• AVs depend on them for signatures

• What happens if we mangle them?

AV Demo

DEMO: https://youtu.be/p3vFRx5dur0

https://youtu.be/p3vFRx5dur0

Introducing FIDO

Introducing FIDO

Introducing FIDO

Issues with some
DLLs

System Binaries/DLLs with
LLAGPA or GPA in IAT

LLAGPA GPA

XPSP3 1300 5426

VISTA 645 26855

WIN7 675 48383

WIN8 324 31158

WIN10 225 50522

API-MS-WIN-CORE*

API-MS-WIN-CORE*
• These files are the exposed implementation of the

windows API

API-MS-WIN-CORE*
• These files are the exposed implementation of the

windows API

• Existed since win7

API-MS-WIN-CORE*
• These files are the exposed implementation of the

windows API

• Existed since win7

• GPA is implemented via API-MS-WIN-CORE-
LIBRARYLOADER-*.DLL

API-MS-WIN-CORE*
• These files are the exposed implementation of the

windows API

• Existed since win7

• GPA is implemented via API-MS-WIN-CORE-
LIBRARYLOADER-*.DLL

• Normally used in system dlls

API-MS-WIN-CORE*
• These files are the exposed implementation of the

windows API

• Existed since win7

• GPA is implemented via API-MS-WIN-CORE-
LIBRARYLOADER-*.DLL

• Normally used in system dlls

• Can be called by userland applications via IAT
parsing

Because it is in…

Because it is in…

Kernel32.dll

SAY AGAIN?

SAY AGAIN?

• We just need GPA in any DLL Import Table to
access the entire windows API

SAY AGAIN?

• We just need GPA in any DLL Import Table to
access the entire windows API

• Since win7, GPA has been in Kernel32.dll Import
Table

SAY AGAIN?

• We just need GPA in any DLL Import Table to
access the entire windows API

• Since win7, GPA has been in Kernel32.dll Import
Table

• We’ve had a stable EMET EAF(+)/Caller bypass
opportunity since Win7 (works for win7 - win10)

One more thing
• GetProcAddress is not the only one

• LoadlibraryExA is in API-MS-WIN-CORE-
LIBRARYLOADER-L1-2-0.dll

LoadLibraryA(‘moo.dll’) == LoadLibraryExA(‘moo.dll’, 0)

• This is completely reliable for Win7

• Maybe Windows 8

• Not on windows Win10 - Must use ExternGPA with
API-MS-WIN-CORE-LIBRARYLOADER-L1-2-0.dll

Tor Exploit w/My
Stub vs EAF+/Caller

DEMO: https://youtu.be/oqHT6Ienudg

https://youtu.be/oqHT6Ienudg

Issues

• Multi-staged payloads should not use SFHA - will
be flagged by EMET

• Meterpreter DLL flagged by EMET EAF because of
Reflective DLL loader

• Updating MSF will take some work

• Need to do winx64

Questions?

• CFG/RGF Implications? ¯_()_/¯

• Get the code: https://github.com/secretsquirrel/
fido

• Thanks: @SubTee, @FreedomCoder, @Wired33,
@__blue__

