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About us - Vladan

• Senior Managing Security Consultant in IBM EMEA 
XFR team

• 20+ years of experience with electronics and IT
• Embedded development, reverse engineering and 

ethical hacking
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Disclamer

• This presentation represents our own views on the topics discussed and doesn’t represent IBM 
position.

• All trademarks and copyrights are acknowledged.
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Why?

• Recent project challenges
• Interesting findings
• We believe it will be useful for community to share
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From the desktop…

• Desktop Intel based platform is around for a very long time
• A lot of skills, tools and techniques developed for it
• 2 major flavors – x86 and x64 with some extensions(MMX, SSE, AVS…)
• Hardware is abstracted by OS and drivers
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…To Embedded

• Usually around some micro CPU
• There are a lot of choices(PIC, AVR, Intel, MIPS, 

ESP…)
• Very common cores are ARM Cortex M0, M3 and 

M4 based
• Those devices comes with a lot of peripherals to 

support virtually any need
• Need to develop both hardware and software side
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Everywhere

• IoT devices are massively deployed
• Previously isolated devices becomes connected
• With expanded capabilities
• Like SCADA systems
• Even cars
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Tools of choice

• IDA Pro
• Capstone
• Hex editors
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IDA Pro for embedded

• Excellent tool… but with some quirks
• Firmware loading – custom loader or manual
• Incomplete disassembly
• Problem with modes and instructions
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Main constraints

• Limited amount of memory and resources
• Power consumption awareness
• Real time responses
• Self sustainable and resilient
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Common hardware issues

• JTAG & UART ports available
• Exposed busses (I2C, IIS, Serial)
• Unprotected external storages (FLASH, sdcard…)
• Unprotected radio interfaces (WiFi, Bluetooth, microwaves…)
• Debugging consoles left active
• Unprotected bootloader and fw updates
• Fuses not set to make internal flash unreadable
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Software Requirements

• Needs to be tailored to fit the hardware
• CPU speed, memory constrains, available storage
• Power consumption
• Error handling and bugs resilience
• Software developer needs to be versatile with the platform hardware developers designed.

• Common solution – choose some of numerous existing frameworks and RTOS which enables 
some level of hardware abstraction.
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Introducing Free RTOS

• Small and very lean RTOS developed by Real Time Engineers Ltd
• Free and open source environment (there is a commercial version)
• Runs on almost everything (30+ platform supported oob)
• Yes, even Arduino
• Easy to customize for new platforms

̶ port.c, portasm.s and portmacro.h needs to be ported for a new platform

• Widely supported by open source community
• Preemptive and cooperative multitasking
• Tickles mode of operation supported
• Tiny footprint
• More details: www.freertos.org
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Supported high level functionalities

• Custom developed TCP and UDP IP stack
• FAT FS
• CLI
• I/O support including GPIO
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FreeRTOS Structure

User Code

FreeRTOS core

HW dependent code

Hardware
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FreeRTOS main components

• Task Scheduler
• Tasks

̶ independent piece of code which runs in its own context and with a separate stack under the Task Scheduler

• Co-routines
̶ Not commonly used. All co-routines share the same stack with prioritized cooperative multitasking

• Data queues
• Semaphores & Mutexes
• Timers
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Internals

• Heavily relies on double linked circular lists
• pxTaskReadyList contains a list of tasks that 

needs to be executed
• Every task has its own Task Control Block. TCB 

has a pointer to the stack allocated for the task.
• Queue is a list with additional pointers 

indicating where is the next read or write 
address.

• Semaphore is a specific instance of queue 
which doesn’t track the data but the number of 
used elements in uxMessageWaiting field.

• Mutex is similar to semaphore, but head pointer 
is always 0 indicating it is a mutex and pointer 
to the task owning it is in the tail pointer.
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Security Features overview

• By design, not much of them
• Since it is not designed as multitenant environment it 

lacks security controls we’re used to on the desktop
• It supports:

̶ Tasks with different privilege levels (only on ARM Cortex M3 
with MPU enabled)

̶ Stack overflow protection
̶ SSL library as an add-on
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Security issues

• These are not real bugs in FreeRTOS, this is just 
observation from the point of adversary who wants to do 
some exploitation!
̶ TCP/IP stack is not very resilient
̶ Stack overflow protection is rudimentary
̶ MPU usage is not very common (supported only on ARM M3 

platforms anyway)
§ Unprivileged task can spawn privileged task, if MPU is used; or
§ Everything runs in the same context otherwise

̶ It is developed in C inheriting all possible security problems as 
any other C programs (buffer overflows, heap corruptions…)
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Sample application

• Sample => simple
• Goals

̶ Get the button state
̶ Toggle the LED if button is pushed

• Idea is to create a simple firmware for a device which 
will have MCU, a button and a LED. 

• When button is pressed, LED will change its state.
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Basic architecture

Scheduler
Button Read 
Task [higher 

priority]
LED Toggle Task 

[lower priority]

Data Queue [length = 1]

C
O
R
E
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Application architecture

Scheduler

Button Interrupt 
Handler

LED Toggle 
Task

Binary 
Semaphore

C
O
R
E Binary 

Semaphore
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Initialize

int	main(	void	){

/*	Setup	hardware	*/
STM_EVAL_LEDInit(	LED1	);
STM_EVAL_PBInit(	BUTTON_KEY,	BUTTON_MODE_EXTI	);

/*	Create	Semaphore	*/
vSemaphoreCreateBinary(	xLedSemaphore	 );

/*	Create	Tasks	*/
xTaskCreate(	xLedSemaphoreHandler,	 "LedSemaphoreHandlerTask",	 	

configMINIMAL_STACK_SIZE,	NULL,	3,	NULL	);

/*	Start	Scheduler	*/
vTaskStartScheduler();

return	1;
}
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Run

//	LED	connected	to	GPIO	port	PC10
static	void	xLedSemaphoreHandler(void	 *pvParameters){

for	(	;;	)	{
xSemaphoreTake(	xLedSemaphore,	portMAX_DELAY );
STM_EVAL_LEDToggle(	LED1	);
//GPIOWriteBit(GPIOC,GPIOPin10,Bit_SET);	 //	turn	on	LED

}
}

//	Button	connected	to	GPIO	port	PB8
static	void	EXTI4_15_IRQHandler(void	 ){
if(	EXTI_GetITStatus(	KEY_BUTTON_EXTI_LINE	)	!=	RESET	)		{
long	lHigherPriorityTaskWoken;
lHigherPriorityTaskWoken =	pdFALSE;
xSemaphoreGiveFromISR (	xLedSemaphore,&lHigherPriorityTaskWoken );
portEND_SWITCHING_ISR(	lHigherPriorityTaskWoken );
EXTI_ClearITPendingBit(	KEY_BUTTON_EXTI_LINE	);
}
}
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From source to hardware

• Wire up the platform – button and led must be where expected
• Compile for the specific platform
• Upload resulting image to the target MCU
• On reset, led should remain off
• Push the button, led should lit
• Push the button again and led should shut
• With minor changes in imports and ensuring button and led are on known positions as defined we 

can compile for any other platform
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What is next?

• Now we have created our first embedded device
• …
• Profit J
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Bad stuff will happen

• Somewhere in the world, dark forces are at works…
• Some people are trying to do some bad stuff to our 

valued product
• Since we made a hardware mistake, it was possible 

to dump the firmware from our device…
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Reverse engineering on embedded systems

The good thing about embedded systems firmware:

It is that it’s deeply tied to the MCU 

The bad thing about embedded systems firmware:

It is that it’s deeply tied to the MCU 
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Reverse engineering on Embedded

• String analysis does not help
• There are no syscalls on FreeRTOS
• There is no memory protection
• IDA by default will not detect the Entry point.

……… can we find the Entry point ?
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The entry point

• STM32 has some default interrupts which are controlled by handlers.

• In order to know where is each handler there is table called Interrupt Vector Table, which holds the
address for each interrupt.

• One of these interrupts is the reset.

• What is boot rather then a reset interrupt?!
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This table contains the addresses of the
routines that will handle some of the
interrupts.

This table is located at offset 0x00.

The entry point - Interrupt Vector Table (IVT)

http://www.st.com/content/ccc/resource/technical/document/programming_manual/fc/90/c7/17/a1/44/43/89/DM00051352.pdf/f iles/DM00051352.pdf/jcr:content/transla tions/en.DM00051352.pdf



33 RECON 2017 Brussels

• Contents of the 0x00 offset of a FreeRTOS image

The entry point – IVT raw 
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• The plugin packs the data into a 
table format 

• And adds the comment for what is 
reserved

The entry point – IVT decoded 



35 RECON 2017 Brussels

The entry point – Reset Handler

Now	we	have	an	entry	point
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Reverse engineering on Embedded

• Now we have an entry point.
• all peripheral access is done by reading and writing into specific memory addresses.

̶ Address ranges and offsets are mapped to the MCU buses.

….. so can these ranges and offsets be 
useful?
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Reverse engineering on STM32F0

• The MCU documentation will contain the registers addresses and their 
functions.

• How does the plugin help?

• It:
• Lists the registers manipulated
• Lists functions that manipulate each register
• Adds comments to the code with description of each register 
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IDA Plugin - Registers descriptions
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IDA Plugin – Functions manipulating registers
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IDA Plugin – Comments on the code

• Pictures for ida plugin seve
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• Generically RTOS need to define critical code areas where the interrupts cannot break the 
execution flow.

• This is done by using the ARM CPSID and CPSIE instructions. 

• So a good place to start looking in your code is before CPSIE instruction. 

Reverse engineering on STM32F0
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Critical code decoding and listing
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Critical code decoding and listing
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• External interrupts where activated using SYSCFGEXT register.

• External interrupts are manipulated using EXTI registers

• Clock source and reload values configured using the SysTick registers
̶ Used on all kind of timers if the clock is given by the CPU

• Nested Vector Interrupt control can be clear or set using the NVI registers

• Real Clock Controller can be manipulated with the RCC registers 
̶ crucial for input/output operations on peripherals

Interesting registers
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Interesting registers
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• Implement heuristics to find registers dynamically addressed
• Automatically re-analyse the interrupt handlers based on the decoded IVT
• Comment calls that will ReEnable Interrupts
• Improve analysis on registers manipulation and identification
• Identification of the Realtime operating system 

Future work



THANK YOU


