
Reversing FreeRTOS on 
embedded devices

Vitor Ventura & Vladan Nikolic 

27th January	2017

IBM X-Force Red EMEA Team



2 RECON 2017 Brussels

Vitor Ventura
Senior Managing Security Consultant
IBM X-Force Red EMEA

Malware reverse Engineer
Penetration Tester
Blah
Blah blah
Blah blah blah

Twiter:	@__VVentura



3 RECON 2017 Brussels

About us - Vladan

• Senior Managing Security Consultant in IBM EMEA 
XFR team

• 20+ years of experience with electronics and IT
• Embedded development, reverse engineering and 

ethical hacking



4 RECON 2017 Brussels

Disclamer

• This presentation represents our own views on the topics discussed and doesn’t represent IBM 
position.

• All trademarks and copyrights are acknowledged.



5 RECON 2017 Brussels

Why?

• Recent project challenges
• Interesting findings
• We believe it will be useful for community to share



6 RECON 2017 Brussels

From the desktop…

• Desktop Intel based platform is around for a very long time
• A lot of skills, tools and techniques developed for it
• 2 major flavors – x86 and x64 with some extensions(MMX, SSE, AVS…)
• Hardware is abstracted by OS and drivers



7 RECON 2017 Brussels

…To Embedded

• Usually around some micro CPU
• There are a lot of choices(PIC, AVR, Intel, MIPS, 

ESP…)
• Very common cores are ARM Cortex M0, M3 and 

M4 based
• Those devices comes with a lot of peripherals to 

support virtually any need
• Need to develop both hardware and software side



8 RECON 2017 Brussels

Everywhere

• IoT devices are massively deployed
• Previously isolated devices becomes connected
• With expanded capabilities
• Like SCADA systems
• Even cars



9 RECON 2017 Brussels

Tools of choice

• IDA Pro
• Capstone
• Hex editors



10 RECON 2017 Brussels

IDA Pro for embedded

• Excellent tool… but with some quirks
• Firmware loading – custom loader or manual
• Incomplete disassembly
• Problem with modes and instructions



11 RECON 2017 Brussels

Main constraints

• Limited amount of memory and resources
• Power consumption awareness
• Real time responses
• Self sustainable and resilient



12 RECON 2017 Brussels

Common hardware issues

• JTAG & UART ports available
• Exposed busses (I2C, IIS, Serial)
• Unprotected external storages (FLASH, sdcard…)
• Unprotected radio interfaces (WiFi, Bluetooth, microwaves…)
• Debugging consoles left active
• Unprotected bootloader and fw updates
• Fuses not set to make internal flash unreadable



13 RECON 2017 Brussels

Software Requirements

• Needs to be tailored to fit the hardware
• CPU speed, memory constrains, available storage
• Power consumption
• Error handling and bugs resilience
• Software developer needs to be versatile with the platform hardware developers designed.

• Common solution – choose some of numerous existing frameworks and RTOS which enables 
some level of hardware abstraction.



14 RECON 2017 Brussels

Introducing Free RTOS

• Small and very lean RTOS developed by Real Time Engineers Ltd
• Free and open source environment (there is a commercial version)
• Runs on almost everything (30+ platform supported oob)
• Yes, even Arduino
• Easy to customize for new platforms

̶ port.c, portasm.s and portmacro.h needs to be ported for a new platform

• Widely supported by open source community
• Preemptive and cooperative multitasking
• Tickles mode of operation supported
• Tiny footprint
• More details: www.freertos.org



15 RECON 2017 Brussels

Supported high level functionalities

• Custom developed TCP and UDP IP stack
• FAT FS
• CLI
• I/O support including GPIO



16 RECON 2017 Brussels

FreeRTOS Structure

User Code

FreeRTOS core

HW dependent code

Hardware



17 RECON 2017 Brussels

FreeRTOS main components

• Task Scheduler
• Tasks

̶ independent piece of code which runs in its own context and with a separate stack under the Task Scheduler

• Co-routines
̶ Not commonly used. All co-routines share the same stack with prioritized cooperative multitasking

• Data queues
• Semaphores & Mutexes
• Timers



18 RECON 2017 Brussels

Internals

• Heavily relies on double linked circular lists
• pxTaskReadyList contains a list of tasks that 

needs to be executed
• Every task has its own Task Control Block. TCB 

has a pointer to the stack allocated for the task.
• Queue is a list with additional pointers 

indicating where is the next read or write 
address.

• Semaphore is a specific instance of queue 
which doesn’t track the data but the number of 
used elements in uxMessageWaiting field.

• Mutex is similar to semaphore, but head pointer 
is always 0 indicating it is a mutex and pointer 
to the task owning it is in the tail pointer.



19 RECON 2017 Brussels

Security Features overview

• By design, not much of them
• Since it is not designed as multitenant environment it 

lacks security controls we’re used to on the desktop
• It supports:

̶ Tasks with different privilege levels (only on ARM Cortex M3 
with MPU enabled)

̶ Stack overflow protection
̶ SSL library as an add-on



20 RECON 2017 Brussels

Security issues

• These are not real bugs in FreeRTOS, this is just 
observation from the point of adversary who wants to do 
some exploitation!
̶ TCP/IP stack is not very resilient
̶ Stack overflow protection is rudimentary
̶ MPU usage is not very common (supported only on ARM M3 

platforms anyway)
§ Unprivileged task can spawn privileged task, if MPU is used; or
§ Everything runs in the same context otherwise

̶ It is developed in C inheriting all possible security problems as 
any other C programs (buffer overflows, heap corruptions…)



21 RECON 2017 Brussels

Sample application

• Sample => simple
• Goals

̶ Get the button state
̶ Toggle the LED if button is pushed

• Idea is to create a simple firmware for a device which 
will have MCU, a button and a LED. 

• When button is pressed, LED will change its state.



22 RECON 2017 Brussels

Basic architecture

Scheduler
Button Read 
Task [higher 

priority]
LED Toggle Task 

[lower priority]

Data Queue [length = 1]

C
O
R
E



23 RECON 2017 Brussels

Application architecture

Scheduler

Button Interrupt 
Handler

LED Toggle 
Task

Binary 
Semaphore

C
O
R
E Binary 

Semaphore



24 RECON 2017 Brussels

Initialize

int	main(	void	){

/*	Setup	hardware	*/
STM_EVAL_LEDInit(	LED1	);
STM_EVAL_PBInit(	BUTTON_KEY,	BUTTON_MODE_EXTI	);

/*	Create	Semaphore	*/
vSemaphoreCreateBinary(	xLedSemaphore	 );

/*	Create	Tasks	*/
xTaskCreate(	xLedSemaphoreHandler,	 "LedSemaphoreHandlerTask",	 	

configMINIMAL_STACK_SIZE,	NULL,	3,	NULL	);

/*	Start	Scheduler	*/
vTaskStartScheduler();

return	1;
}



25 RECON 2017 Brussels

Run

//	LED	connected	to	GPIO	port	PC10
static	void	xLedSemaphoreHandler(void	 *pvParameters){

for	(	;;	)	{
xSemaphoreTake(	xLedSemaphore,	portMAX_DELAY );
STM_EVAL_LEDToggle(	LED1	);
//GPIOWriteBit(GPIOC,GPIOPin10,Bit_SET);	 //	turn	on	LED

}
}

//	Button	connected	to	GPIO	port	PB8
static	void	EXTI4_15_IRQHandler(void	 ){
if(	EXTI_GetITStatus(	KEY_BUTTON_EXTI_LINE	)	!=	RESET	)		{
long	lHigherPriorityTaskWoken;
lHigherPriorityTaskWoken =	pdFALSE;
xSemaphoreGiveFromISR (	xLedSemaphore,&lHigherPriorityTaskWoken );
portEND_SWITCHING_ISR(	lHigherPriorityTaskWoken );
EXTI_ClearITPendingBit(	KEY_BUTTON_EXTI_LINE	);
}
}



26 RECON 2017 Brussels

From source to hardware

• Wire up the platform – button and led must be where expected
• Compile for the specific platform
• Upload resulting image to the target MCU
• On reset, led should remain off
• Push the button, led should lit
• Push the button again and led should shut
• With minor changes in imports and ensuring button and led are on known positions as defined we 

can compile for any other platform



27 RECON 2017 Brussels

What is next?

• Now we have created our first embedded device
• …
• Profit J



28 RECON 2017 Brussels

Bad stuff will happen

• Somewhere in the world, dark forces are at works…
• Some people are trying to do some bad stuff to our 

valued product
• Since we made a hardware mistake, it was possible 

to dump the firmware from our device…



29 RECON 2017 Brussels

Reverse engineering on embedded systems

The good thing about embedded systems firmware:

It is that it’s deeply tied to the MCU 

The bad thing about embedded systems firmware:

It is that it’s deeply tied to the MCU 



30 RECON 2017 Brussels

Reverse engineering on Embedded

• String analysis does not help
• There are no syscalls on FreeRTOS
• There is no memory protection
• IDA by default will not detect the Entry point.

……… can we find the Entry point ?



31 RECON 2017 Brussels

The entry point

• STM32 has some default interrupts which are controlled by handlers.

• In order to know where is each handler there is table called Interrupt Vector Table, which holds the
address for each interrupt.

• One of these interrupts is the reset.

• What is boot rather then a reset interrupt?!



32 RECON 2017 Brussels

This table contains the addresses of the
routines that will handle some of the
interrupts.

This table is located at offset 0x00.

The entry point - Interrupt Vector Table (IVT)

http://www.st.com/content/ccc/resource/technical/document/programming_manual/fc/90/c7/17/a1/44/43/89/DM00051352.pdf/f iles/DM00051352.pdf/jcr:content/transla tions/en.DM00051352.pdf



33 RECON 2017 Brussels

• Contents of the 0x00 offset of a FreeRTOS image

The entry point – IVT raw 



34 RECON 2017 Brussels

• The plugin packs the data into a 
table format 

• And adds the comment for what is 
reserved

The entry point – IVT decoded 



35 RECON 2017 Brussels

The entry point – Reset Handler

Now	we	have	an	entry	point



36 RECON 2017 Brussels

Reverse engineering on Embedded

• Now we have an entry point.
• all peripheral access is done by reading and writing into specific memory addresses.

̶ Address ranges and offsets are mapped to the MCU buses.

….. so can these ranges and offsets be 
useful?



37 RECON 2017 Brussels

Reverse engineering on STM32F0

• The MCU documentation will contain the registers addresses and their 
functions.

• How does the plugin help?

• It:
• Lists the registers manipulated
• Lists functions that manipulate each register
• Adds comments to the code with description of each register 



38 RECON 2017 Brussels

IDA Plugin - Registers descriptions



39 RECON 2017 Brussels

IDA Plugin – Functions manipulating registers



40 RECON 2017 Brussels

IDA Plugin – Comments on the code

• Pictures for ida plugin seve



41 RECON 2017 Brussels

• Generically RTOS need to define critical code areas where the interrupts cannot break the 
execution flow.

• This is done by using the ARM CPSID and CPSIE instructions. 

• So a good place to start looking in your code is before CPSIE instruction. 

Reverse engineering on STM32F0



42 RECON 2017 Brussels

Critical code decoding and listing



43 RECON 2017 Brussels

Critical code decoding and listing



44 RECON 2017 Brussels

• External interrupts where activated using SYSCFGEXT register.

• External interrupts are manipulated using EXTI registers

• Clock source and reload values configured using the SysTick registers
̶ Used on all kind of timers if the clock is given by the CPU

• Nested Vector Interrupt control can be clear or set using the NVI registers

• Real Clock Controller can be manipulated with the RCC registers 
̶ crucial for input/output operations on peripherals

Interesting registers



45 RECON 2017 Brussels

Interesting registers



46 RECON 2017 Brussels

• Implement heuristics to find registers dynamically addressed
• Automatically re-analyse the interrupt handlers based on the decoded IVT
• Comment calls that will ReEnable Interrupts
• Improve analysis on registers manipulation and identification
• Identification of the Realtime operating system 

Future work



THANK YOU


