
ARM EDITION
HARDWARE-ASSISTED ROOTKITS & INSTRUMENTATION:

Matt Spisak
REcon 2016, Montreal

RECON 2016

▸ Offense-based approach to security and hunting adversaries

▸ Research thrusts in malware, threat intel, data science, and exploit prevention

▸ Matt Spisak (@matspisak)

▸ Vulnerability and exploit mitigation research at Endgame

▸ Mobile security since Nokia N series (before iPhone)

ABOUT

RECON 2016

OUTLINE

▸ Motivation

▸ ARM Debug Architecture

▸ Tracing and Instrumentation

▸ Rootkits

▸ TrustZone

▸ Exploit Mitigations

RECON 2016MOTIVATION

DEBUGGING EMBEDDED SYSTEMS IS COMPLICATED

Hardware
‣ JTAG is a gold standard
‣ Custom dev boards +

Virtualization extensions

‣ JTAG access can be hit/miss
‣ Destructive
‣ Expensive

Software
‣ Portable, scalable
‣ existing tools for HLOS like iOS,

Android

‣ Can be tightly coupled to OS
‣ Often limited to PL0/EL0
‣ Lots of reinventing wheel

Emulation
‣ Scalable and powerful
‣ Cost-effective
‣ Sometimes a good option (e.g.

CTF)

‣ Lack support for HW interfaces
‣ Requires big time investment

RECON 2016MOTIVATION

SEARCHING FOR ALTERNATIVES

▸ Whats a good general approach?

▸ Personal philosophy:

▸ Always make use of real hardware

▸ Lean towards software-based tools

▸ GOAL: find common ARM architectural
debug features accessible from software (on
COTS devices)

ARM DEBUG ARCHITECTURE

RECON 2016ARM DEBUG ARCHITECTURE

INVASIVE DEBUG

▸ Debug-modes: Monitor, Halting, or None

▸ Software debug events: BKPT, breakpoint, watchpoint, vector trap

▸ Halting debug events result in processor entering debug state

▸ Support driven by DBGEN and SPIDEN authentication signals

▸ if DBGEN is low —> BKPT instruction only event supported

▸ Authentication signals typically controlled externally

▸ Without DBGEN, options are limited

RECON 2016ARM DEBUG ARCHITECTURE

NON-INVASIVE DEBUG

▸ Trace: Embedded Trace Buffer (ETB) / CoreSight Program Flow Trace (PFT)

▸ PFT/PTM generates traces for waypoints: branch & exception instructions

▸ Accessible from external and software (coprocessor or memory-mapped)

▸ PFT/PTM can be locked (ETMLAR) - only writeable in memory-mapped

▸ memory-mapped access is IMPLEMENTATION DEFINED

▸ Trace drivers in Android kernel check CoreSight fuse status

▸ A potential software-based debug feature for COTS devices

RECON 2016ARM DEBUG ARCHITECTURE

NON-INVASIVE DEBUG

▸ Sample-based Profiling

▸ Registers for sampling Program Counter and Context ID

▸ No CP14 visibility, optional memory-mapped and external interfaces

▸ PMU

▸ Focus of remainder of talk

NOT THIS PMU.

21 3THIS PMU.

performance counters

RECON 2016ARM DEBUG ARCHITECTURE

PERFORMANCE MONITORING UNIT (PMU)

▸ Optional extension, but recommended

▸ Interfaces: CP15 (mandatory), memory-mapped (optional), external (optional)

▸ Dates back to ARMv6, common in ARM11, Cortex-R, Cortex-A

▸ 1 cycle counter, up to 31 general counters

▸ Set of event filters for counting

▸ Support for interrupts on counter overflow  

sampling period

RECON 2016ARM DEBUG ARCHITECTURE

PERFORMANCE MONITORING UNIT (PMU)

▸ Provides real-time feedback on system

▸ Useful for software/hardware engineers

▸ Diagnose bugs

▸ Tools:

▸ ARM DS-5 Streamline

▸ Linux perf / oprofile

ARM DS-5 Streamline

RECON 2016ARM DEBUG ARCHITECTURE

TERMINOLOGY & ABBREVIATIONS
▸ PMU - Performance Monitoring Unit

▸ PMI - Performance Monitoring Interrupt

▸ PMC - Performance Monitoring Counter

Least Privileged

Most Privileged

USER MODE

KERNEL MODE

HYPERVISOR

SECURE MONITORPL3/EL3

PL2/EL2

PL1/EL1

PL0/EL0

ARM x86

Ring 3

Ring 0

Ring -1

Ring -2

EXCEPTION

Reset

Undefined Instruction

SVC Supervisor Call (e.g. SYSCALL)

Prefetch Abort BKPT, or code Page Fault

Data Abort Data Page Fault

IRQ Interrupts (Normal World)

FIQ Fast Interrupts (Secure World)

ARM Exception Vector Table (EVT)

RECON 2016ARM DEBUG ARCHITECTURE

PMU RELATED WORK

▸ “Using Hardware Performance Events for Instruction-Level Monitoring on the
x86 Architecture”, [Vogl, Eckert]

▸ ROP detection with PMU using mispredicted RET [Wicherski], [Li, Crouse]

▸ Rootkit detection with performance counters [Wang, Karri]

▸ Control-flow integrity using BTS [Xia et al]

▸ Control-flow integrity using PMU [Endgame] - BlackHat USA 2016

▸ All prior art is focused on Intel / x86 architecture

RECON 2016ARM DEBUG ARCHITECTURE

SAMPLE ARM PMU EVENTS

EVENT TYPE EVENT CODE

 LD_RETIRED: Load instruction executed 0x06

 ST_RETIRED: Store instruction executed 0x07

 INST_RETIRED: Instruction executed 0x08

 PC_WRITE_RETIRED: Software change of PC 0x0C

 BR_RETURN_RETIRED: Branch Return retired 0x0E

 BR_MISP_PRED: Branch mispredicted 0x10

 L1I_CACHE: Level 1 instruction cache access 0x14

RECON 2016ARM DEBUG ARCHITECTURE

PMU REGISTERS

▸ PMCR - Control Register

▸ N: Number of counters

▸ E: Enable / Disable all counters

▸ ARMv6: MRC/MCR p15, 0, <Rd>, c15, c12, 0

▸ ARMv7: MRC/MCR p15, 0, <Rd>, c9, c12, 0

RECON 2016ARM DEBUG ARCHITECTURE

PMU REGISTERS - CONFIGURE COUNTERS

▸ PMCNTENSET - Enable Counter

▸ ARMv7: MRC/MCR p15, 0, <Rd>, c9, c12, 1

▸ PMCNTENCLR - Disable Counter

▸ ARMv7: MRC/MCR p15, 0, <Rd>, c9, c12, 2

▸ PMSELR - Counter Selection Register

▸ ARMv7: MRC/MCR p15, 0, <Rd>, c9, c12, 5
Use this register prior to read/write  
of event type or counter registers

RECON 2016ARM DEBUG ARCHITECTURE

PMU REGISTERS - CONFIGURE COUNTERS

▸ PMXEVTYPER - Counter Event Filter Register

▸ Selects event and modes to count

▸ ARMv7: MRC/MCR p15, 0, <Rd>, c9, c13, 1

▸ PMXEVTCNTR - Event Counter Register

▸ ARMv7: MRC/MCR p15, 0, <Rd>, c9, c13, 2

EVENT CODE MODES INCLUDED

0x6800000C Branches in Secure PL1 and HYP

0x6000000C Branches in Secure PL1

0x9800000C Branches in Secure PL0 and HYP

0x9000000C Branches in Secure PL0

0x3800000C Branches in Secure PL0,PL1,HYP

0x4000000C Branches in non-secure PL1

0x8000000C Branches in non-secure PL0

RECON 2016ARM DEBUG ARCHITECTURE

PMU REGISTERS - CONFIGURE COUNTERS
//Enable armv7 PMU Counters  
MRC p15, 0, R1, c9, c12, 0  
ORR R1, R1, #1  
MCR p15, 0, R1, c9, c12, 0

//Set PMC1 to count Instructions Executed  
MOV R1, #1  
MCR p15, 0, R1, c9, c12, 5 //PMSELR  
MOV R1, #0x8  
MCR p15, 0, R1, c9, c13, 1 //PMXEVTYPER

//Initialize PMC1 to -3  
MOV R1, #0xFFFFFFFD  
MCR p15, 0, R1, c9, c13, 2 //PMXEVTCNTR

//Enable PMC1  
MOV R1, #1  
MCR p15, 0, R1, c9, c12, 1 //PMCNTENSET

RECON 2016ARM DEBUG ARCHITECTURE

PMU REGISTERS - CONFIGURE INTERRUPTS
▸ PMINTENSET - Interrupt Enable Register

▸ ARMv7: MRC/MCR p15, 0, <Rd>, c9, c14, 1

▸ PMINTENCLR - Interrupt Disable Register

▸ ARMv7: MRC/MCR p15, 0, <Rd>, c9, c14, 2

▸ PMOVSR - Overflow Status Register 
PMOVSET - Overflow Status Set Register

▸ ARMv7: MRC/MCR p15, 0, <Rd>, c9, c12, 3

▸ ARMv7: MRC/MCR p15, 0, <Rd>, c9, c14, 3

RECON 2016ARM DEBUG ARCHITECTURE

PMU REGISTERS - CONFIGURE INTERRUPTS

//Enable Interrupts for PMC1 and PMC2 
MOV R1, #3  
MCR p15, 0, R1, c9, c14, 1 //PMINTENSET

//Read and Clear Overflow on Interrupt 
MRC p15, 0, R0, c9, c12, 3 //PMOVSR  
MCR p15, 0, R0, c9, c12, 3 //PMOVSR

RECON 2016ARM DEBUG ARCHITECTURE

DO YOU EVEN COUNT?

▸ DBGAUTHSTATUS

▸ Lists whether invasive/non-invasive debug are supported in secure and
non-secure worlds

▸ ARMv7: MRC/MCR p14, 0, <Rd>, c7, c14, 6

▸ ID_DFR0

▸ Lists PMU version supported (if any)

▸ ARMv7: MRC/MCR p15, 0, <Rd>, c0, c1, 2

RECON 2016ARM DEBUG ARCHITECTURE

THE CENTER FOR CHIPS WHO CAN COUNT GOOD

CASE STUDY: PMU TRACING

RECON 2016CASE STUDY: PMU TRACING

APPROACH

▸ Make the PMU more invasive with frequent PMC-based traps

▸ CoreSight Program Flow Trace (PFT) captures waypoints (i.e. branches)

▸ We can come pretty close to PFT Trace using the PMU:

▸ Count all branches: predicted and mispredicted

▸ Interrupt all the things: set our counter(s) to -1

▸ Use our ISR as the instrumentation logic

BX
BL B

RECON 2016CASE STUDY: PMU TRACING

APPROACH - BRANCH TRACING

func:

error:

-1 BL func  
 
 STMFD SP!, {R0-R2,R4-R9,LR}  
 MOV R8, R1  
 MOV R1, SP  
 MOV R2, R2  
 LDR R7, [SP]  
 CMP R7, #0  
 BEQ error  

 MOV R4, #0xFFFFFFF7  
 ADD SP, SP, #0xC

PMC1: 0xFFFFFFFF (-1) Event: 0x0C (All Branches)

RECON 2016CASE STUDY: PMU TRACING

APPROACH - BRANCH TRACING

error:

-1 BL func  
 
 0 STMFD SP!, {R0-R2,R4-R9,LR}  
 MOV R8, R1  
 MOV R1, SP  
 MOV R2, R2  
 LDR R7, [SP]  
 CMP R7, #0  
 BEQ error  

 MOV R4, #0xFFFFFFF7  
 ADD SP, SP, #0xC

func:

PMC1: 0xFFFFFFFF (-1) Event: 0x0C (All Branches)

overflow

PMU ISR
- CAPTURE PC
- CAPTURE REGS 
- MEMORY SNAPSHOT
- RESET COUNTER

RECON 2016CASE STUDY: PMU TRACING

APPROACH - BRANCH TRACING

func:

error:

-1 BL func  
 
 0 STMFD SP!, {R0-R2,R4-R9,LR}  
-1 MOV R8, R1  
 MOV R1, SP  
 MOV R2, R2  
 LDR R7, [SP]  
 CMP R7, #0  
 BEQ error  

 MOV R4, #0xFFFFFFF7  
 ADD SP, SP, #0xC

PMC1: 0xFFFFFFFF (-1) Event: 0x0C (All Branches)
PMU ISR

- CAPTURE PC
- CAPTURE REGS 
- MEMORY SNAPSHOT
- RESET COUNTER

RECON 2016CASE STUDY: PMU TRACING

APPROACH - BRANCH TRACING

func:

error:

-1 BL func  
 
 0 STMFD SP!, {R0-R2,R4-R9,LR}  
-1 MOV R8, R1  
-1 MOV R1, SP  
 MOV R2, R2  
 LDR R7, [SP]  
 CMP R7, #0  
 BEQ error  

 MOV R4, #0xFFFFFFF7  
 ADD SP, SP, #0xC

PMC1: 0xFFFFFFFF (-1) Event: 0x0C (All Branches)
PMU ISR

- CAPTURE PC
- CAPTURE REGS 
- MEMORY SNAPSHOT
- RESET COUNTER

RECON 2016CASE STUDY: PMU TRACING

APPROACH - BRANCH TRACING

func:

error:

PMC1: 0xFFFFFFFF (-1) Event: 0x0C (All Branches)

-1 BL func  
 
 0 STMFD SP!, {R0-R2,R4-R9,LR}  
-1 MOV R8, R1  
-1 MOV R1, SP  
-1 MOV R2, R2  
 LDR R7, [SP]  
 CMP R7, #0  
 BEQ error  

 MOV R4, #0xFFFFFFF7  
 ADD SP, SP, #0xC

PMU ISR
- CAPTURE PC
- CAPTURE REGS 
- MEMORY SNAPSHOT
- RESET COUNTER

RECON 2016CASE STUDY: PMU TRACING

APPROACH - BRANCH TRACING
PMC1: 0xFFFFFFFF (-1) Event: 0x0C (All Branches)

func:

error:

-1 BL func  
 
 0 STMFD SP!, {R0-R2,R4-R9,LR}  
-1 MOV R8, R1  
-1 MOV R1, SP  
-1 MOV R2, R2  
-1 LDR R7, [SP]  
 CMP R7, #0  
 BEQ error  

 MOV R4, #0xFFFFFFF7  
 ADD SP, SP, #0xC

PMU ISR
- CAPTURE PC
- CAPTURE REGS 
- MEMORY SNAPSHOT
- RESET COUNTER

RECON 2016CASE STUDY: PMU TRACING

APPROACH - BRANCH TRACING

PMU ISR
- CAPTURE PC
- CAPTURE REGS 
- MEMORY SNAPSHOT

PMC1: 0xFFFFFFFF (-1) Event: 0x0C (All Branches)

func:

error:

-1 BL func  
 
 0 STMFD SP!, {R0-R2,R4-R9,LR}  
-1 MOV R8, R1  
-1 MOV R1, SP  
-1 MOV R2, R2  
-1 LDR R7, [SP]  
-1 CMP R7, #0  
 BEQ error  

 MOV R4, #0xFFFFFFF7  
 ADD SP, SP, #0xC

PMU ISR
- CAPTURE PC
- CAPTURE REGS 
- MEMORY SNAPSHOT
- RESET COUNTER

RECON 2016CASE STUDY: PMU TRACING

APPROACH - BRANCH TRACING

PMU ISR
- CAPTURE PC
- CAPTURE REGS 
- MEMORY SNAPSHOT

PMC1: 0xFFFFFFFF (-1) Event: 0x0C (All Branches)

func:

error:

-1 BL func  
 
 0 STMFD SP!, {R0-R2,R4-R9,LR}  
-1 MOV R8, R1  
-1 MOV R1, SP  
-1 MOV R2, R2  
-1 LDR R7, [SP]  
-1 CMP R7, #0  
-1 BEQ error  

 MOV R4, #0xFFFFFFF7  
 ADD SP, SP, #0xC

PMU ISR
- CAPTURE PC
- CAPTURE REGS 
- MEMORY SNAPSHOT
- RESET COUNTER

RECON 2016CASE STUDY: PMU TRACING

APPROACH - BRANCH TRACING
PMU ISR

- CAPTURE PC
- CAPTURE REGS 
- MEMORY SNAPSHOT
- RESET COUNTER

PMU ISR
- CAPTURE PC
- CAPTURE REGS 
- MEMORY SNAPSHOT 
- RESET COUNTER

func:

error:

PMC1: 0xFFFFFFFF (-1) Event: 0x0C (All Branches)

-1 BL func  
 
 0 STMFD SP!, {R0-R2,R4-R9,LR}  
-1 MOV R8, R1  
-1 MOV R1, SP  
-1 MOV R2, R2  
-1 LDR R7, [SP]  
-1 CMP R7, #0  
-1 BEQ error  

 0 MOV R4, #0xFFFFFFF7  
 ADD SP, SP, #0xC

overflow

RECON 2016CASE STUDY: PMU TRACING

APPROACH - BRANCH TRACING

PMU ISR
- CAPTURE PC
- CAPTURE REGS 
- MEMORY SNAPSHOT 
- RESET COUNTER

func:

error:

PMC1: 0xFFFFFFFF (-1) Event: 0x0C (All Branches)

-1 BL func  
 
 0 STMFD SP!, {R0-R2,R4-R9,LR}  
-1 MOV R8, R1  
-1 MOV R1, SP  
-1 MOV R2, R2  
-1 LDR R7, [SP]  
-1 CMP R7, #0  
-1 BEQ error  

 0 MOV R4, #0xFFFFFFF7  
-1 ADD SP, SP, #0xC

PMU ISR
- CAPTURE PC
- CAPTURE REGS 
- MEMORY SNAPSHOT
- RESET COUNTER

RECON 2016CASE STUDY: PMU TRACING

BUT WHAT ABOUT LINUX PERF?

▸ We want a custom ISR for instrumentation

▸ Too tightly coupled to Linux

▸ Invoking API’s != learning

▸ But perf source can be useful for understanding PMU interfaces

WHERE’S THE PMU 
INTERRUPT?

RECON 2016CASE STUDY: PMU TRACING

ARM GENERIC INTERRUPT CONTROLLER (GIC) SPECIFICATION

▸ SGI: Software Generated Interrupts 
PPI: Private Peripheral Interrupts 
SPI: Shared Peripheral Interrupts

▸ ARM GIC spec recommends PMU Overflows to use INTID 23

ARM GIC Architecture Specification

RECON 2016

▸ Device Tree Source

▸ Brute Force

▸ Register all unused PPI’s & SPI’s,
trigger PMIs, diff /proc/interrupts 

cpu-pmu {
 compatible = "qcom,krait-pmu";
 qcom,irq-is-percpu;
 interrupts = <1 7 0xf00>;
};

CASE STUDY: PMU TRACING

CHALLENGE: FINDING PMU INTERRUPTS

INT# = 16 + 7 = 23

▸ Implementation:

▸ Android: request_percpu_irq(),
request_threaded_irq()

▸ Embedded firmware: patch IRQ
vector handler

PPI

RECON 2016CASE STUDY: PMU TRACING

CHALLENGE: INTERRUPT SHADOW

func:

error:

-1 BL func  
 
 LDR R7, [SP]  
 CMP R7, #0  
 BEQ error  

 MOV R4, #0xFFFFFFF7  
 ADD SP, SP, #0xC

PMC1: 0xFFFFFFFF (-1) Event: 0x0C (All Branches)

RECON 2016CASE STUDY: PMU TRACING

func:

PMC1: 0xFFFFFFFF (-1) Event: 0x0C (All Branches)

overflow

CHALLENGE: INTERRUPT SHADOW

-1 BL func  
 
 0 LDR R7, [SP]  
 CMP R7, #0  
 BEQ error  

 MOV R4, #0xFFFFFFF7  
 ADD SP, SP, #0xC

error:

RECON 2016CASE STUDY: PMU TRACING

func:

PMC1: 0xFFFFFFFF (-1) Event: 0x0C (All Branches)

overflow

CHALLENGE: INTERRUPT SHADOW

-1 BL func  
 
 0 LDR R7, [SP]  
 0 CMP R7, #0  
 BEQ error  

 MOV R4, #0xFFFFFFF7  
 ADD SP, SP, #0xC

error:

RECON 2016CASE STUDY: PMU TRACING

func:

PMC1: 0xFFFFFFFF (-1) Event: 0x0C (All Branches)

overflow

CHALLENGE: INTERRUPT SHADOW

-1 BL func  
 
 0 LDR R7, [SP]  
 0 CMP R7, #0  
 0 BEQ error  

 MOV R4, #0xFFFFFFF7  
 ADD SP, SP, #0xC

error:

RECON 2016CASE STUDY: PMU TRACING

func:

PMC1: 0xFFFFFFFF (-1) Event: 0x0C (All Branches)

overflow

CHALLENGE: INTERRUPT SHADOW

error:

-1 BL func  
 
 0 LDR R7, [SP]  
 0 CMP R7, #0  
 0 BEQ error  

 1 MOV R4, #0xFFFFFFF7  
 ADD SP, SP, #0xC

RECON 2016CASE STUDY: PMU TRACING

func:

PMC1: 0xFFFFFFFF (-1) Event: 0x0C (All Branches)

overflow

CHALLENGE: INTERRUPT SHADOW

error:

PMU ISR
- CAPTURE PC
- CAPTURE REGS 
- MEMORY SNAPSHOT
- RESET COUNTER

-1 BL func  
 
 0 LDR R7, [SP]  
 0 CMP R7, #0  
 0 BEQ error  

 1 MOV R4, #0xFFFFFFF7  
 1 ADD SP, SP, #0xC

RECON 2016CASE STUDY: PMU TRACING

func:

PMC1: 0xFFFFFFFF (-1) Event: 0x0C (All Branches)

overflow

CHALLENGE: INTERRUPT SHADOW

error:

PMU ISR
- CAPTURE PC
- CAPTURE REGS 
- MEMORY SNAPSHOT
- RESET COUNTER

-1 BL func  
 
 0 LDR R7, [SP]  
 0 CMP R7, #0  
 0 BEQ error  

 1 MOV R4, #0xFFFFFFF7  
 1 ADD SP, SP, #0xC

} Interrupt Shadow 
Skid = 4 Instructions

Causes miss of up to 15% covered basic blocks

RECON 2016CASE STUDY: PMU TRACING

OTHER CHALLENGES

▸ CPU Hot-Plugging — easy solution for Android: register_hotcpu_notifier()

▸ Lack of Last Branch Recording feature on ARM

▸ Complicated kernel mode instrumentation: use sampling period of -2  

▸ Requires small patch to entry-armv.S (or hot patch)

PMU ISR

2) RET from ISR causes overflow

3) PMI

Infinite Interrupt Loop __IRQ_SVC
Set PMC1 = -2Set PMC1 = -1

Sampling Period: 0xFFFFFFFE (-2)

2) RET from IRQ vector increments PMC1

Next branch triggers overflow

Sampling Period: 0xFFFFFFFF (-1)

1) PMI
1) PMI

RECON 2016CASE STUDY: PMU TRACING

ANDROID PROTOTYPE

PERFMON 
ISR

PERFMON 
ISR

PERFMON 
ISR

…

RELAY
THREAD

RELAY
THREAD

RELAY
THREAD

…

KERNELUSER SPACE

IDA Plugin

CORE 1

CORE 2

CORE N

…

pmutrace.kopmu_server

Captures PC at 
time of interrupt, 
buffered per core

PC PC PC PC PC

PC PC PC PC PC

Visualize coverage and control
pmu_server to select threads,
mode, and start/stop

RECON 2016CASE STUDY: PMU TRACING

CONNECTING THE DOTS

▸ Use IDA to our advantage

▸ For each PMU waypoint:

▸ Color/count all instructions in
Basic Block

▸ If only 1 xref from basic block:
count/color it

▸ If only 1 xref to basic block:
count/color it

Example of a perfect PMU branch tracing run

RECON 2016CASE STUDY: PMU TRACING

CONNECTING THE DOTS

▸ Interrupt shadow

▸ Basic block xref algorithm helps
fill in missed blocks

▸ Fuzzing / code coverage will
eventually be interrupted in this
block

▸ Could improve by adding 2nd
counter to count instructions
between interrupts

Interrupt  
Shadow

Example of PMU trace missing basic block

DEMO: PMU TRACING
DEVICE REQUIREMENTS:
‣ ROOTED

‣ CONFIG_MODULES OPTION (NOT AS COMMON)

‣ CONFIG_PREEMPT OPTION (COMMON)

‣ IRQ HANDLER PATCH (PL1/EL1)

RECON 2016CASE STUDY: PMU TRACING

ANDROID INSTRUMENTATION. SO WHAT?
▸ Recall approach is hardware-assisted - not tied to a specific OS

▸ Less invasive than BKPT tracing

▸ Supports both user mode and kernel mode instrumentation

▸ Not limited to branch tracing, other potential instrumentation use-cases

▸ And these chips can count too:

▸ Broadcom WiFi; Intel/Infineon, MediaTek + other ARM Cellular Basebands

▸ Apple ARM SoCs

▸ PowerPC, MIPS

CASE STUDY: PMU ROOTKITS

RECON 2016CASE STUDY: PMU ROOTKITS

PRIOR ART IN ARM ROOTKITS

▸ Traditional rootkits: modify syscall table or EVT [Phrack Issue 68]

▸ Suterusu performs hot patching of kernel functions [Coppola]

▸ Cloaker toggles SCTLR to move EVT [David et al]

▸ Clock Locking Beats explores using CPU governor for hiding cycles [Thomas]

▸ TrustZone based rootkit [Roth]

RECON 2016CASE STUDY: PMU ROOTKITS

INSPIRATION

ARM Architecture Manual ARMv7-A&R - Appendix C

AH AH AH  
very interesting…. 

RECON 2016TEXT

TRACING ROOTKITS TRUSTZONE HYPERVISOREXPLOIT 
PREVENTION DEFENSEINSTRUMENTATION

PMU 
ASSISTED

PMU 
ASSISTED

PMU 
ASSISTED

PMU 
ASSISTED

PMU 
ASSISTED

PMU 
ASSISTED

PMU 
ASSISTED

RECON 2016CASE STUDY: PMU ROOTKITS

QUICK NOTE ON ARM LICENSES

▸ ARM Core License

▸ Use core ARM designs

▸ ARM Architectural license

▸ Enables custom cores provided it implements an ARM instruction set

▸ Examples: Qualcomm Scorpion/Krait/Kryo, Apple A6/A7/etc.

RECON 2016CASE STUDY: PMU ROOTKITS

COUNTING THE EXCEPTION VECTOR TABLE

EVENT Cortex-A7 Cortex-A53 Cortex-A57 Cortex-A72 Scorpion Krait Kryo

Undefined Instruction √ √ √ √ ?
SVC √ √ √ √ ?

Prefetch Abort √ √ √ √ ?
Data Abort √ √ √ √ ?

IRQ √ √ √ √ √ √ ?
FIQ √ √ √ √ √ √ ?
SMC * * √ √ √ √ ?
HVC √ √ ? ? ?

ARM Design Custom ARM-based Design

RECON 2016CASE STUDY: PMU ROOTKITS

DOWN THE RABBIT HOLE

ARM Architecture Manual ARMv7-A&R
▸ Chipset vendors with proprietary PMU implementations:

▸ Qualcomm

▸ Apple

▸ Likely others

Covered in earlier slides

RECON 2016CASE STUDY: PMU ROOTKITS

 SCORPION KRAIT KRYO

2008 2012 2015

ARMv7 ARMv7 ARMv8

1-2 Cores 2 or 4 cores 4 cores

Snapdragon S1/S2/S3 Snapdragon
S4/400/600/800/805 Snapdragon 818/820/823

BlackBerry Bold 9900 
Samsung Galaxy S2 (LTE) 

Nokia Lumia 900 
HTC Droid Incredible

Nexus 4/5/6/7 
Samsung Galaxy S4/S5 

HTC One M8 
LG G3

LG G5 
Samsung Galaxy S7 

HTC 10 
Xiomi Mi 5

RECON 2016CASE STUDY: PMU ROOTKITS

QUALCOMM KRAIT PMU

▸ Adds 4 event select registers: 1 for Venum VFP, 3 for other components of CPU

▸ Krait event encoded using code + group + region => (code << 8 * group)

▸ ARM event select register (PMXEVTYPER) set to link to Krait region and group

Krait Region 0 Krait Region 1 Krait Region 2

MRC/MCR p15, 1, <Rd>, c9, c15, 0 MRC/MCR p15, 1, <Rd>, c9, c15, 1 MRC/MCR p15, 1, <Rd>, c9, c15, 2

Interrupts/Exceptions + other ? ?

~100 event codes ~128 event codes ~156 event codes

PMXEVTYPER = 0xCC | group PMXEVTYPER = 0xD0 | group PMXEVTYPER = 0xD4 | group

Only a few documented in old Scorpion src. Black-box analysis used to determine # of events

RECON 2016CASE STUDY: PMU ROOTKITS

QUALCOMM KRAIT PMU

▸ Configure Krait + ARM PMU to count Prefetch Aborts:

▸ Krait Event Code: 0x0B group: 3 Region: 0

/*Set Krait Region 0 event selection register  
To count Prefetch Aborts*/  
MRC p15, 0, R1, c9, c15, 0  
ORR R1, R1, #0x8b000000  
MCR p15, 0, R1, c9, c15, 0

//Set PMXEVTYPER to point to krait region 0 
MOV R1, #0xCF  
MCR p15, 0, R1, c9, c13, 1  

RECON 2016CASE STUDY: PMU ROOTKITS

PMU-ASSISTED ROOTKITS

▸ Trap SVC instructions via PMU

▸ Use ISR to filter system calls, and
redirect code execution after servicing
PMI

▸ Avoids patch protection*

▸ Installation: a few instructions to
initialize PMU registers, and then
register ISR for PMU interrupts

1

2

3

4

RECON 2016CASE STUDY: PMU ROOTKITS

CHALLENGE: DELAYED INSTRUCTION SKID

▸ PMI serviced at some point after IRQs
enabled in vector_swi

▸ 3 cases we must deal with:

1. PMI before branch to syscall
routine within vector_swi

2. PMI at entry point of syscall routine

3. PMI in middle of syscall routine

IRQs enabled

RECON 2016CASE STUDY: PMU ROOTKITS

CASE 1: INTERRUPT BEFORE BRANCH TO SYSCALL ROUTINE
#define CPSIE_ADDR 0xC01064D0  
…  
 irq_regs = get_irq_regs(); //get SVC mode regs  
 pregs = task_pt_regs(current); //get user mode regs  
 …  
 if (pregs->ARM_r7 == 0x3) //sys_read  
 {  
 switch (irq_regs->ARM_pc - CPSIE_ADDR) //offset after CPSIE  
 {  
 //emulate remaining instructions up to LDRCC  
 //can skip those involved in resolving syscall routine 
 case 0x0:  
 case 0x4:  
 irq_regs->ARM_r9 = irq_regs->ARM_sp & 0xFFFFE000;  
 …  
 case 0x14:  
 case 0x18:  
 case 0x1C:  
 case 0x20:  
 irq_regs->ARM_lr = ret_fast_syscall;  
 case 0x24:  
 irq_regs->ARM_pc = (uint32_t)hook_sysread;  

RECON 2016CASE STUDY: PMU ROOTKITS

CASE 2: SYSCALL ROUTINE ENTRY POINT

▸ Replace saved PC with address of hook

 
 irq_regs = get_irq_regs();  
 pregs = task_pt_regs(current);  
 …  
 if (pregs->ARM_r7 == 0x3) //sys_read  
 {  
 //Check if PMU interrupted at entry point addr of sys_read  
 if (pregs->ARM_pc == orig_sys_read)  
 {  
 pregs->ARM_pc = (uint32_t)hook_sys_read;  

  

RECON 2016CASE STUDY: PMU ROOTKITS

CASE 3: MIDDLE OF SYSCALL ROUTINE

▸ We will let syscall routine complete

▸ Find address of ret_fast_syscall on the stack
and replace with address of trampoline

▸ Trampoline loads LR with ret_fast_syscall,
and branches to appropriate post_hook
function

▸ post_hook can retrieve original params
from saved user mode registers, and modify
as necessary

Case 3: Beyond entry point

Find and replace on stack

DEMO: PMU ROOTKIT
PROCESS AND FILE HIDING WITH SYS_GETDENTS64 PMU SVC TRAPS

MOTOROLA NEXUS 6  
QCOM APQ8084 (KRAIT) CPU

RECON 2016CASE STUDY: PMU ROOTKITS

FUN WITH QMI

▸ Linux rootkits are boring. This is a phone…

▸ Hook sys_read in context of qmuxd in order to intercept all QMI comms from
modem to Android (using only the PMU)

QMUXD 
QMI PROXY

KERNELUSER SPACE

sys_write

MODEMsys_read

PMU Traps

SMS APP

PHONE APP

…

DEMO: PMU ROOTKIT
INTERCEPTING QMI WITH SYS_READ PMU SVC TRAPS

MOTOROLA NEXUS 6  
QCOM APQ8084 (KRAIT) CPU

RECON 2016CASE STUDY: PMU ROOTKITS

ANALYSIS AND LIMITATIONS

▸ PMU trap on SVC instructions adds less than 5% overhead (2-3%)

▸ Should evade current kernel integrity monitor algorithms

▸ PMU registers do not persist a core reset

▸ Any other code at PL1/EL1 or higher can read/write the registers

RECON 2016CASE STUDY: PMU ROOTKITS

DETECTION STRATEGIES

▸ /proc/interrupts —> easy to modify and cloak

▸ Reading PMU registers looking for someone counting SVCs

▸ Access to PMU registers can be trapped to HYP mode

▸ Not all usage of PMU in this way is malicious…

▸ irq_handler_entry/irq_handler_exit tracepoints

▸ Validate IRQ handler addresses by iterating radix tree structure

▸ PMU Traps on Data & Prefetch Aborts for ShadowWalker?

CASE STUDY: PMU DEFENSE

RECON 2016CASE STUDY: PMU DEFENSE

EXPLOIT DETECTION FROM THE KERNEL

▸ Trap SVC instructions to perform syscall monitoring

▸ Detect ROP behavior (e.g. EMET / ROPGuard checks)

▸ Doesn’t increase attack surface to protected user space binaries

▸ Much easier to implement than Rootkit since no re-direction required

▸ Protect COTS binaries (i.e no source/compiler required)

▸ No modifications to kernel image - just need ISR registered

RECON 2016CASE STUDY: PMU DEFENSE

ANDROID CVE’S IN MEDIA

0

6

12

18

24

30

INFORMATION  
DISCLOSURE

REMOTE CODE 
EXECUTION

ELEVATION OF  
PRIVILEGE

DENIAL OF 
SERVICE

4

25

18

10

13

23

4

libstagefright mediaserver

Aug 2015 - Jun 2016

DEMO: PMU DEFENSE
BLOCKING STAGEFRIGHT ROP CHAIN FROM THE KERNEL

LG NEXUS 5  
QCOM MSM8974 (KRAIT) CPU

CVE-2015-3864 
POC’s courtesy Mark Brand, Google & 
NorthBit’s Metaphor

RECON 2016

FUTURE WORK

▸ Port instrumentation approach to basebands

▸ Analyze Apple hardware for PMU features and explore iOS kernel tracing

RECON 2016

ACKNOWLEDGEMENTS

▸ Cody Pierce, Endgame

▸ Eric Miller, Endgame

▸ Jamie Butler, Endgame

▸ Several others at Endgame

▸ Researchers that paved the way for PMU assisted security research

QUESTIONS?
OR FEEDBACK

mspisak at endgame.com 
@matspisak

RECON 2016

REFERENCES
 

S. Vogl and C. Eckert, “Using Hardware Performance Events for Instruction-Level Monitoring on the x86 Architecture,” in Proceedings of EuroSec’12, 5th European
Workshop on System Security, ACM Press, Apr. 2012.  
 
G. Wicherski, “Taming ROP on Sandy Bridge: Using Performance Counters to Detect Kernel Return-Oriented Programming.” SyScan 2013. 

 X. Li and M. Crouse, “Transparent ROP Detection using CPU Performance Counters.”https://www.trailofbits.com/threads/2014/
transparent_rop_detection_using_cpu_perfcounters.pdf . Threads 2014.  

X. Wang and R. Karri, “NumChecker: detecting kernel control-flow modifying rootkits by using hardware performance counters,” in DAC, ACM, 2013.  

 Y. Xia, Y. Liu, H. Chen, and B. Zang, “CFIMon: Detecting violation of control flow integrity using performance counters,” in Proceedings of the 2012 42nd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 1–12, IEEE Computer Society, 2012.  
 
M. Coppola, “Suterusu Rootkit:Inline Kernel Function Hooking on x86 and ARM.” https://github.com/mncoppola/suterusu  
 
 

J. M. Thomas, “Clock Locking Beats: Exploring the Android Kernel and Processor Interactions.” https://github.com/monk-dot/ClockLockingBeats  
 
 

T. Roth, “Next Generation Mobile Rootkits.” Hack In Paris 2013. https://hackinparis.com/data/slides/2013/Slidesthomasroth.pdf

 

F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell, “Cloaker: Hardware supported rootkit concealment,” in Proceedings - IEEE Symposium on Security and
Privacy, pp. 296–310, 2008.

 

https://www.trailofbits.com/threads/2014/transparent_rop_detection_using_cpu_perfcounters.pdf
https://github.com/mncoppola/suterusu
https://github.com/monk-dot/ClockLockingBeats
https://hackinparis.com/data/slides/2013/Slidesthomasroth.pdf

