From Silicon to Compiler

Reverse-Engineering the CoolRunner-Ii
Bitstream Format

Dr. Andrew Zonenberg (@azonenberg)

| Active

Hardware Software Wetware

SECURITY SERVICES

Outline

Introduction / motivation
[C|S]PLD architecture overview
Block diagram and die overview
Detailed functional analysis
Live demo

Sorry, no cute cat pictures ®

| Active

About Me

Full-stack hacker, transistors to web apps

RPI ‘15 PhD CS
— Created and taught a new class on hardware RE
— Thesis was on hardware-based OS for SoCs

Active contributor to siliconprOn
Been with IOA since January

| Active

Motivation

Programmable logic is everywhere these days
— Cheaper than ASICs, dominating low volume

It's full of black boxes
No visibility into the compilers (RoTT anyone?)
Can’t dev on platforms official compilers don’t run on

Can't debug or RE bitstreams
— Vendors want you to think bitstream RE is hard
— Butis it really?

| Active

Methodology

azonenberg@foxacid:/opt/Xilinx/14.7% du -h --summarize .
186G

Nobody wants to read gigabytes of spaghetti in IDA
— Plus, it's against the EULA (if you care about that stuff)

Nobody ever said | can’t look at the silicon, though...

| Active

Open source... by any means necessary

CHALLENGE ACGEPTED

| Active

Our target — Xilinx XC2C32A

Dirt cheap — just over $1 each
Choice of QFN, QFP, or csBGA
Nice “big” 180nm process (4-metal UMC eNVM)
Small bitstream (~12K)

Simple product term arch with no hard IP cores
Old-ish chip, but still in volume production
Vendor tools are free of charge

I A .
I0Active, Inc. Copyright ©2015. All Rights Reserved ctlvem

JEDEC programming files

ASCII container format, kind of like ihex but binary
Xilinx CPLD tools use these instead of raw binaries

Coolrunner-Il JED files have comments!

— These give (somewhat cryptic) hints as to which bits
control which parts of the chip

— But no details on the coding for the bits ®

| Active

Sum of Products

Canonical expression of digital equations
(A&'B&C)|(ID&'E&F)] ...

| Active

ANUFULRITS | ANUFHLXITZ |

SPLD architecture

We can make programmable AND / OR gates!
— [All] & [Bll] & [Cll] & [Dll] AND_FEL_X174 AND_FE1_X2¥4

— [AlO] [[BIO] | [C|O] | [DIO] ...
Grid of gates with a 2:1 mux at each input
| |

— Inputs on one axis

— QOutputs on the other

— One SRAM cell per input

— Logically cascaded but often implemented as tree

| Active

SPLD architecture

Take N signals from FFs and input pins

Inputs, plus complements, go to 2N x M AND array
Product terms go to M x R OR array
Sum terms go to FF or output pins

| Active

CPLD architecture

SPLDs scale poorly, how to improve?

Grid of SPLDs connected by a crossbar
— Global bus with signals from all FFs and GPIOs
— Pick a subset and feed to each SPLD

| Active

XC2C32A high-level arch

32 GPIOs + 1 input-only

2 function blocks (SPLDs)
— 16 GPIOs and 16 FFs
— 40 inputs from global routing, chosen from 65 available
— 80x56 AND array
— 56x16 OR array
— Some product terms are special (covered later on)

| Active

Time to put on our lab coats

Decapping and imaging process has been beaten to
death in lots of other talks so we won'’t cover it here
— Check out siliconprOn.org or my class for a refresher

(http //security.cs.rpi.edu/courses/hwre- spr|n92014/)

This talk is about high level RE,
not lab techniques

I0Active, Inc. Copyright ©2015. All Rights Reserved

XC2C32A M4 overview

I0Active, Inc. Copyright ©2015. All Rights Reserved c'tlve,,

Function block

Bitstream EEPROM TDO

“ Wafer test pads

(func unknown)

T ’I
T e A ‘. I []
I0Active, Inc. Copyright ©2015. All Rights Reserved J \ctlvem

TDI/TMS/TCK

Closeup of functlon block

Macrocell (1 of 16) — b #«— AND array (top half)

< OR array

: e - (e
% IR0 b 3 i ¥ - M o I .
I0Active, Inc. Copyright ©2015. All Rights Reserved ‘ \ctlvem

Config bit structure

Some info in programming algorithm docs
— Bit order in JED # bit order on die (virtual addressing)
— (48+1) rows x 260 cols (last row is config metadata)
— 7 lock bits (Ox2A = locked, 0x7F = unlocked)
— 2 “done” bits (0x3 = blank chip, 0x2 = valid bitstream)
258 data columns + “transfer bits”
— Leftmost and rightmost bit indicate “row valid”

FF = blank chip so expect active-low for most stuff

| Active

Config memory (implant)

Data flows up from EEPROM to SRAM during boot process

I0Active, Inc. Copyright ©2015. All Rights Reserved

9MCUB

' ‘....‘...‘ [ifs
||||| TH o

o =

Conflg memory (M2 near routlng)

WLl

5.:

B 13
1 g%
§ i
it
i i
i
R e

BLs connected
on other layer

Main logic array

R

i e Z R

I 20 Conﬂg FOWS X :,: VIV ORTEE

i 8 config rows e

I0Active, Inc. Copyright ©2015. All Rights Reserved

‘:' 20 cohfig

rOWS :.‘v“u,.‘;,”‘."‘.‘,‘.‘

) Active

PLA AND array

56 pterms x 40 rows (+comps) flanking OR block
Count config bits: 112 wide x 2 blocks x 20 rows E
Conclusions

— Each row of config bits = 1 input from xbar

— 2 bits per product term for X and !X
— Empirical testing shows one-hot coding

I0Active, Inc. Copyright ©2015. All Rights Reserved c'tlve,,

PLA OR array

56 AND terms x 16 OR outputs
Count config bits: 112 wide x 8 high

Conclusions
— One hit to select a particular product term
— Two OR terms interleaved in one config row

I0Active, Inc. Copyright ©2015. All Rights Reserved c.tlvem

Macrocells

27 config bits per MC (9x3 grid*)
Makes sense, EEPROM is 9 bits wide
3 rows * 16 MC = 48 rows (full helght)
Functionally partially RE'd '
These bits also control IOBs :

Eh hheh b

TS LSO A O TR SWe ORw 508y

* Actually 9x2 + 9x1

) 3T F0 WP BE R0 e TRk E e

FARRI R B R R R

b

g g-?' g". =1
T et 1 it 1 | é;‘fr
13 E
) 14 frmad, 3 Bt U0
=t =il =
-l j-E3 &
— ’- ‘ic- fﬂz i
=ttt = &3 |
frr el | | |
s 3 "B i -3

>
2
o

Security bits

Nine lock/done bits are in last row of config EEPROM
Column position is same as right hand macrocells

Invuiniipvn

Coincidence? | think not! EESSS=====g—

Nine 6T SRAM cells ;) ,M' mm . |

Macrocell EEPROM I I

I0Active, Inc. Copyright ©2015. All Rights Reserved

Global routing

Located between left and right AND array

— 20 bits high x 16 bits wide (x 2 high for top/bottom half)
Somehow selects 20 out of 65 signals to each FB

— Half of each row selects a single left/right output
But how do you do a 65:1 mux with 8 bits?

— Dense coding makes no sense (would need 7 bits)

— Obviously can’t be one-hot (would need 65 bits)

— Datasheet is of no help here

| Active

Global routing row — implant (Dash etch)

d

I0Active, Inc. Copyright ©2015. All Rights Reserve

Global routing row — metal 4

Six groups of ~11 signals (rightmost is only 10)

u
I0Active, Inc. Copyright ©2015. All Rights Reserved ctlvem

Global routing row — vectorized

High-fanout inverter

/

” 'la f . ﬂ.u. a : .l |=

e Bt % & f 7] ! --"I I --;ﬂl-
—_—

These two are different Six identical blocks

I0Active, Inc. Copyright ©2015. All Rights Reserved c'tlve,,

Thoughts so far

Big driver at each side goes out to the PLA

— Three-stage inverter (logically one NOT gate)
Each of the eight blocks contains two SRAM cells

— Maybe one for leftbound and one for rightbound?
Six identical blocks, six groups of wires on M4

— This seems promising...

| Active

Let’s take a look at M3...

Power/ground vias

Six vias per row
But not identical!

R T I

I0Active, Inc. Copyright ©2015. All Rights Reserved.

Dust particle ®

Examining the pattern

Each row of the routing fabric has six M3-M4 vias
— Exactly one via under each of the M4 bus groups
— But in a different place for each row
Now we’re getting somewhere
— Routing matrix is not a full crossbar!
— Sparse crossbar with only 6 connections possible per row
— Different combinations for each one

| Active

Looking back at poly/M1

Config bit Pass transistor

L'J =
d P
w
=
“ Rt VCCINT w t MUXOUT TOP A0 MUXIN TOP 90 g VCCINT M ‘
=3 o
< 4 [}
O h 6 S
FB1_MUXSEL_A0_P o G}
N MUXOUT _FB1 R N
FB1_MUXSEL_AO_GATED = FB1_MUXSEL 90 _GATED
(-9 o
] FB1_MUXSEL 90_N o]
‘ F
= = -
a 0 =
a m > FB2_MUXSEL_AO_N l’
FB2_MUXSEL AD_GATED FB2_MUXSEL 90 GATED
MUXOL

' !
w
»

MUXIN_TOP_AD

MUXIN_TOP_90

VCCINT VCCINT

GND

ATE
OGATE
GND

I0Active, Inc. Copyright ©2015. All Rights Reserved c'tlve,,

Putting it all together

Each row is an 8:1 tristate bus mux
— Constant zero (active low)
— Constant one (active HIGH)
— One signal from each group on M4 (6x active low)
Global “OGATE” signal forces output high
— NORZ2s are to avoid bus fights between nets
Rows are not identical, each one has different subset
— Can use max-flow to assign signals to rows

| Active

Global routing schematic

WL_TOF

JLLUP_BL_P
PULLUP_BL_N

FB2_PULL
*ULLDOWN_N

WL_TOP

EL_AC_BL_P
L_N

MUXSEL_90_BL_F
MUXSEL_90_BL_N

MUXDUT_FB2

| Active

by
apdEass
-

Figuring out order of M4 bus

“timescale 1ns / 1ps
module test(clk_2848khz, led);

/ ¢ input
(* "P1" *) (*® IOSTANDARD = "LVCMOS
input wire clk_2e4

LED out
(* LOC = "P38" *) (* IOSTANDARD = "LVCMOS33" *)
output reg led = B8;

't ¢ re +hic is plac
reg[17:4]
alwuyf @{posedge le 2048khz)

count <= count + 1;

) the LED blink
(* reg toggle_pendi
always @(pomedgr clk_2@48khz) begin
if{count ==

toggle_pendi .= ltoggle_pending;
end

Blink the LED
always @(posedge clk 2@48khz) begin
if(toggle pending && (count == @))
led <= !led;
end

Wi SWS SHZ

endmodule 0.0- T i i i -0
00E+0 5GODOE3 1.0E+D 1.5E+0 20E+40 25E40 30E+D 35E+0 40E+0 d

| Active

A few last bits on layout

M1/poly = gates

M2 = local vert routing, SRAM BL, OGATE

M3 = local horz routing, SRAM WL, mux outputs
M4 = input bus. Bit ordering L-R:

— FB1 GPIOs

— Global input

— FB2 GPIOs

— FB1 FFs

— FB2 FFs

| Active

Full PLA structure

We now know almost enough to configure the PLA

One last gotcha — most pterms are dual purpose!
— All can be used as general purpose logic

— 48 have special connections to macrocells (3 each)
» Used for set/reset, clock enable, etc

— 4 have special connections to the whole FB
» Use these to avoid use of lots of per-MC PTs

— 4 appear to have no special use
— Datasheet describes functions, but not which is which

| Active

Per-FB product terms

Control Term Clock (CTC)
— Per-FB clock (kinda like BUFH)

Control Term Reset (CTR)
— Per-FB reset

Control Term Set (CTS)
— Per-FB set

Control Term Enable (CTE)
— Per-FB output enable (for parallel buses etc)

| Active

Per-macrocell product terms

Product Term A (PTA)
— Can be used as FF set/reset
Product Term B (PTB)
— Can be used as IOB output enable
Product Term C
— Can be used as FF clock
— Must be used as CE for DFFCE cells
— Goes to macrocell XOR gate (see next slide)

| Active

Macrocell XOR gate

Output from the PLA doesn’t go directly to FF/10B

First, PLA output is XORed with...
— Product Term C (or its complement)
— Constant 1
— Constant O

This allows for efficient adders, plus bypassing the OR
array for slight speedup

So... which product term is PTC?

| Active

ldentifying PTC

We can configure the PLA exactly as we want

Copy black-box MC config bits from ISE bitstream that
Is known to use PTC

Scan one PT at a time until we hit it
Turns out, PTC for cell N is term 3N + 10

| Active

ldentifying other pterms

Still working on this

Probably PTB, PTA are either

— PTC+1,PTC+2

— PTC-1,PTC-2
And CT* are likely among the first few terms
Too busy with “real work” to test this yet ®

| Active

Global config bits

There are 22 global config bits at middle of die

3 of them control I/O bank Vt
— One global bit (XC2C32 backward compat)
— One per-bank bit (used for 32A bitstreams)
Rest control other misc stuff
— Global clock (3), set/reset (2), output enable (8 bits)
— 10B termination mode (1 bit, pullup/keeper)
— Input-only pin config (2 bits)
— Coding of most unknown as of now

| Active

libcrowbar

BSD-licensed library for manipulating CR-II bitstreams
Needs a lot of work and refactoring, but (kinda) works
Only supports the 2c32a for now

http://redmine.drawersteak.com/projects/achd-
soc/repository/show/trunk/src/crowbar

| Active

Libcrowbar usage example

= static ca
static ca
sgtatic cast<F

PIOLD is
GPIOLL is

| Active

fcplan

Floorplanner / physical layout viewer

Currently supports AND array and global

routing only
O 00

ANU_FEL LTS

ANU_bEL XaT2

I0Active, Inc. Copyright ©2015. All Rights Reserved

<

AND_FE1 X174 |
o

<z

AND_FE1_X1YS |

&
e

AND_FE1 X4 |
o

<z

AND_FB1_XZVS |

| Active

fcplan

WoaLd)
€7 Wd3Ld €T
vZ We3Ld vz
S W3aLd]
97 Wuald 9E Wi
£T Wy3ld e w
87 Wy3ld 8z Wi
62 Wd3ld 6T W
0€ Wy3Ld og W
1€ uaLd TE W
7€ yald €W
€€ W3ld €€
vE Wa3ld vE Wi
SE Wuald SE Wi
9€ Wuald 9E I
£€7WY3ld L7
8€ Wy3Ld]
6€ Wd3ld 6c W
Or Wd3ld o W
Tr WH3ld T W
2r Wd3ld [0
€F Wy3ld £F Wi
bt WE3ld PH W
St Y3ld Sb I
9t WY3ld St
L6 Wd3Ld v
8¢ Wd3ld 8 W
6¢ Wd3ld 6t I
05 WH3ld 05 I
18 Wd3ld T8 Wi
25 Wy3ld [4=gt
€6 WY3ld €5 I
b WE3Ld PG
SS WEALd S
95 Wy3ld 95 W

)

T

&

g

S

[v]
95 Wy3ld 95 I
S5 WH3Ld e
vS We3Ld [ERY
€6 Wyald £5 Wi
75 We3ld =gt
16 We3ld T8
05 W3Ld 05 W
6¢ Wd3ld 6b W
8¢ Wd3ld 8r W
L6 We3Ld v
9 W3ld Eray
St Wb3ld St Wi
bt Wb3ld o W
£r WY3ld €6
26 We3ld [t
Tr Wuald o W
or Wd3ld ob W
66 Wy3ld 667
8€ W3ld 8e I
L€ Wy3ld LE Wi
9€E Wuald E
S WEald SETI
bEWEILd PETI
€€ eald [
26 uald e W
1€ Weald €W
0€ Wy3Ld 0E W
62 Wy3ld 62 Wi
87 Wu3ld 8¢ Wi
£T Wy3ld e
97 Wuald Il
ST W

ST WY3ld

| Active

I0Active, Inc. Copyright ©2015. All Rights Reserved

Acknowledgements

John McMaster (siliconprOn)
— CNC microscopy, sample prep
Ray Dove (RPI)
— SEM/FIB access and training
Bryant Colwill (RPI)
— Cleanroom/microprobe access and training
SiliconprOn.org team
— Lots of helpful advice and feedback

| Active

Live demo

| Active

Future work (RE)

Figure out remaining special product terms
Figure out rest of macrocell bits
Figure out rest of global bits

Support larger devices
— Routing matrix via ROM varies across device densities
— New macrocell features in = 128 MC devices

| Active

Future work (toolchain)

Add support for OR array etc to fcplan
Yosys -> libcrowbar bridge for RTL synthesis

Improve decompiler
— Higher-level structure extraction (adders, etc)

| Active

Questions?

| Active

