From Silicon to Compiler Reverse-Engineering the CoolRunner-II Bitstream Format

Dr. Andrew Zonenberg (@azonenberg) Senior Security Consultant

Hardware Software Wetware SECURITY SERVICES

Outline

- Introduction / motivation
- [C|S]PLD architecture overview
- Block diagram and die overview
- Detailed functional analysis
- Live demo
- Sorry, no cute cat pictures ☺

About Me

- Full-stack hacker, transistors to web apps
- RPI '15 PhD CS
 - Created and taught a new class on hardware RE
 - Thesis was on hardware-based OS for SoCs
- Active contributor to siliconpr0n
- Been with IOA since January

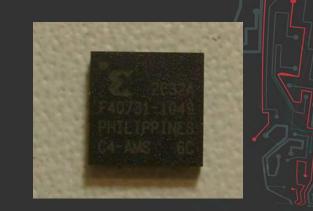
Motivation

- Programmable logic is everywhere these days
 - Cheaper than ASICs, dominating low volume
- It's full of black boxes
- No visibility into the compilers (RoTT anyone?)
- Can't dev on platforms official compilers don't run on
- Can't debug or RE bitstreams
 - Vendors want you to think bitstream RE is hard
 - But is it really?


Methodology

azonenberg@foxacid:/opt/Xilinx/14.7\$ du -h --summarize .
18G .

- Nobody wants to read gigabytes of spaghetti in IDA
 Plus, it's against the EULA (if you care about that stuff)
- Nobody ever said I can't look at the silicon, though...


Open source... by any means necessary

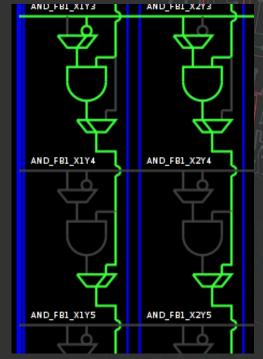
Our target – Xilinx XC2C32A

- Dirt cheap just over \$1 each
- Choice of QFN, QFP, or csBGA
- Nice "big" 180nm process (4-metal UMC eNVM)
- Small bitstream (~12K)
- Simple product term arch with no hard IP cores
- Old-ish chip, but still in volume production
- Vendor tools are free of charge

JEDEC programming files

- ASCII container format, kind of like ihex but binary
- Xilinx CPLD tools use these instead of raw binaries
- Coolrunner-II JED files have comments!
 - These give (somewhat cryptic) hints as to which bits control which parts of the chip
 - But no details on the coding for the bits 😕

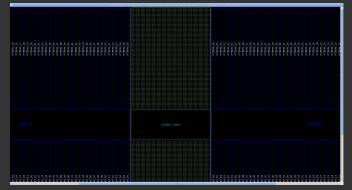
Note Block 0 * Note Block 0 ZIA * L000000 11111111* L000008 11111111* L000024 11111111* L000024 11111111* L000040 11111111* L000048 11111111* L000056 11111111* L000056 11111111* L000056 11111111*


Sum of Products

- Canonical expression of digital equations
- (A & !B & C) | (!D & !E & F) | ...

SPLD architecture

- We can make programmable AND / OR gates!
 - [A|1] & [B|1] & [C|1] & [D|1] ...
 - [A|0] | [B|0] | [C|0] | [D|0] ...
- Grid of gates with a 2:1 mux at each input
 - Inputs on one axis
 - Outputs on the other
 - One SRAM cell per input
 - Logically cascaded but often implemented as tree


SPLD architecture

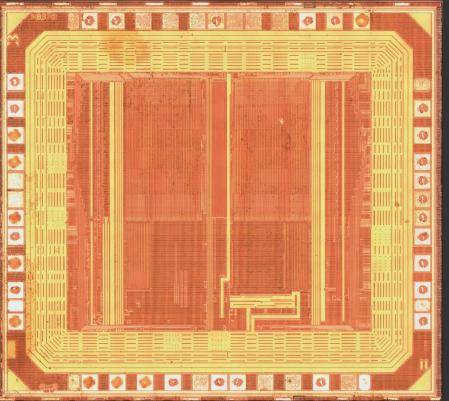
- Take N signals from FFs and input pins
- Inputs, plus complements, go to 2N x M AND array
- Product terms go to M x R OR array
- Sum terms go to FF or output pins

CPLD architecture

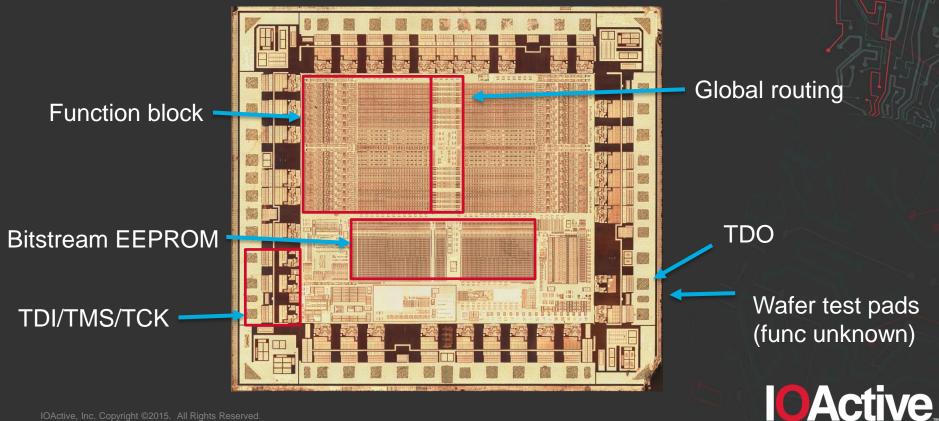
- SPLDs scale poorly, how to improve?
- Grid of SPLDs connected by a crossbar
 - Global bus with signals from all FFs and GPIOs
 - Pick a subset and feed to each SPLD

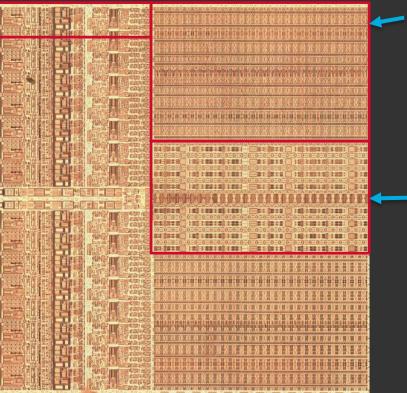
XC2C32A high-level arch

- 32 GPIOs + 1 input-only
- 2 function blocks (SPLDs)
 - 16 GPIOs and 16 FFs
 - 40 inputs from global routing, chosen from 65 available
 - 80x56 AND array
 - 56x16 OR array
 - Some product terms are special (covered later on)


Time to put on our lab coats

- Decapping and imaging process has been beaten to death in lots of other talks so we won't cover it here
 - Check out siliconpr0n.org or my class for a refresher (http://security.cs.rpi.edu/courses/hwre-spring2014/)
- This talk is about high level RE, not lab techniques


XC2C32A M4 overview


IOActive, Inc. Copyright ©2015. All Rights Reserved.

XC2C32A implant overview (Dash etch)

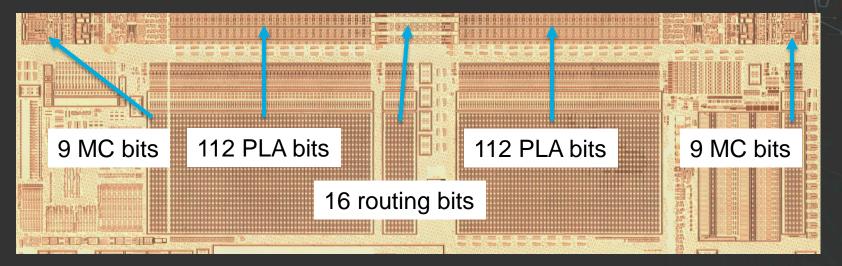
Closeup of function block

Macrocell (1 of 16)

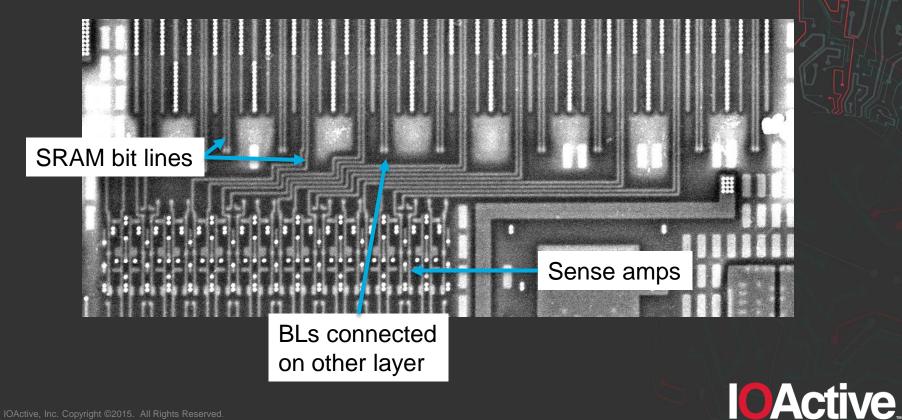
AND array (top half)

OR array

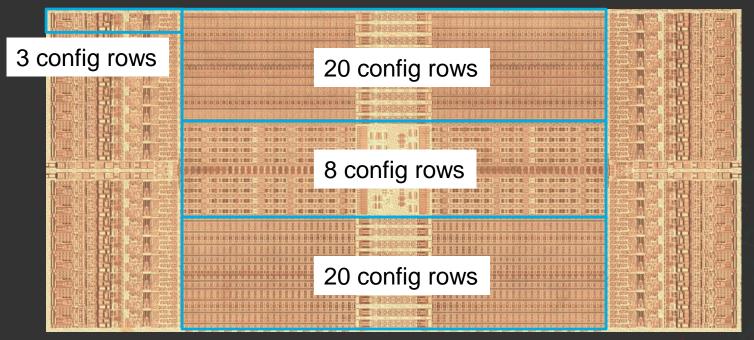
IOActive


Config bit structure

- Some info in programming algorithm docs
 - Bit order in JED \neq bit order on die (virtual addressing)
 - (48+1) rows x 260 cols (last row is config metadata)
 - 7 lock bits (0x2A = locked, 0x7F = unlocked)
 - -2 "done" bits (0x3 = blank chip, 0x2 = valid bitstream)
- 258 data columns + "transfer bits"
 - Leftmost and rightmost bit indicate "row valid"
- FF = blank chip so expect active-low for most stuff

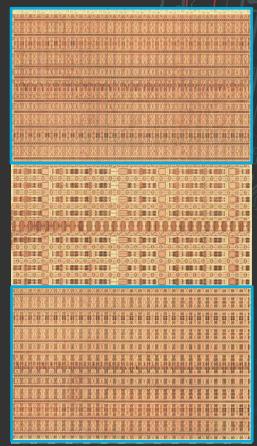

Config memory (implant)

Data flows up from EEPROM to SRAM during boot process



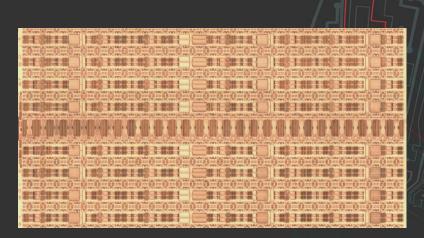
Config memory (M2 near routing)

Main logic array

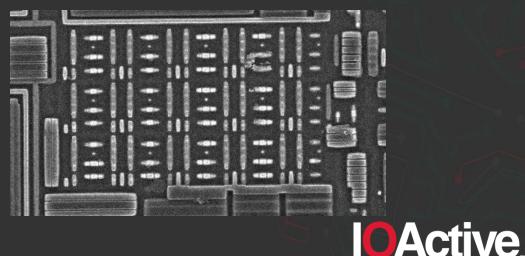


IOActive, Inc. Copyright ©2015. All Rights Reserved.

PLA AND array


- 56 pterms x 40 rows (+comps) flanking OR block
- Count config bits: 112 wide x 2 blocks x 20 rows
- Conclusions
 - Each row of config bits = 1 input from xbar
 - 2 bits per product term for X and !X
 - Empirical testing shows one-hot coding

PLA OR array


- 56 AND terms x 16 OR outputs
- Count config bits: 112 wide x 8 high
- Conclusions
 - One bit to select a particular product term
 - Two OR terms interleaved in one config row

Macrocells

- 27 config bits per MC (9x3 grid*)
- Makes sense, EEPROM is 9 bits wide
- 3 rows * 16 MC = 48 rows (full height)
- Functionally partially RE'd
- These bits also control IOBs

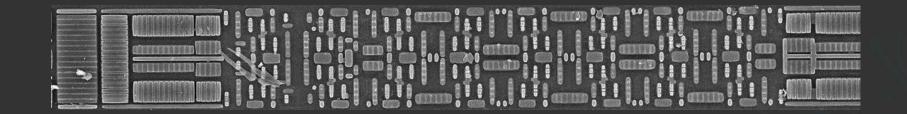
* Actually 9x2 + 9x1

Security bits

• Nine lock/done bits are in last row of config EEPROM

- Column position is same as right hand macrocells
- Coincidence? I think not!

Nine 6T SRAM cells ;)


Macrocell EEPROM

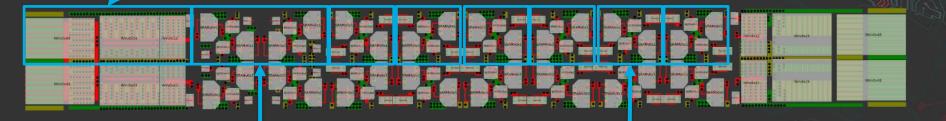
Global routing

- Located between left and right AND array
 - 20 bits high x 16 bits wide (x 2 high for top/bottom half)
- Somehow selects 20 out of 65 signals to each FB
 - Half of each row selects a single left/right output
- But how do you do a 65:1 mux with 8 bits?
 - Dense coding makes no sense (would need 7 bits)
 - Obviously can't be one-hot (would need 65 bits)
 - Datasheet is of no help here

Global routing row – implant (Dash etch)

IOActive, Inc. Copyright ©2015. All Rights Reserved

Global routing row – metal 4


Six groups of ~11 signals (rightmost is only 10)

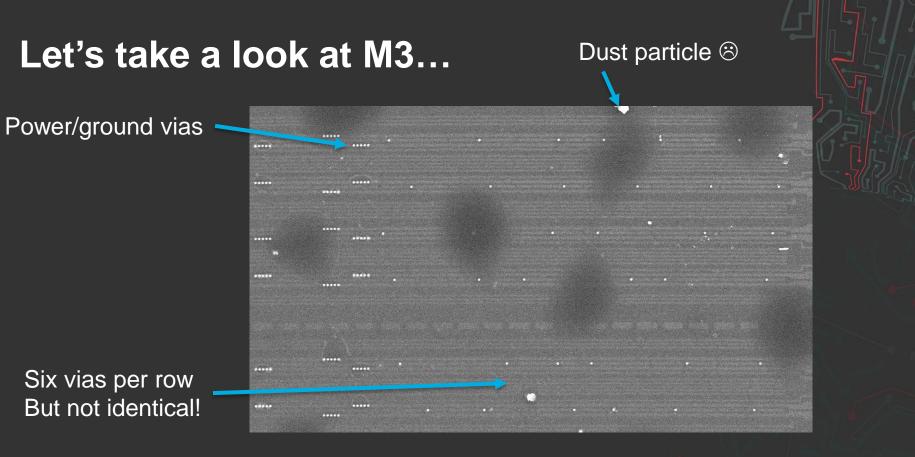
IOActive, Inc. Copyright ©2015. All Rights Reserved.

Global routing row – vectorized

High-fanout inverter

These two are different

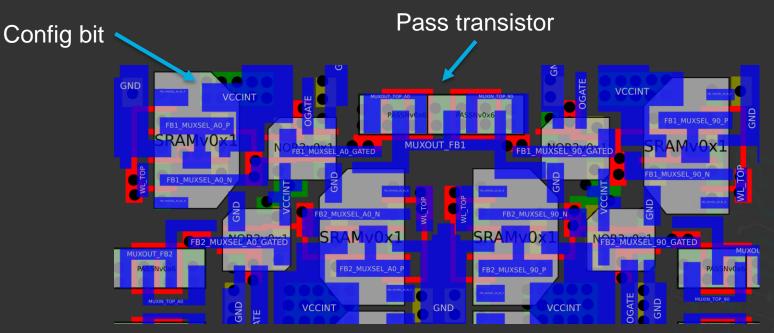
Six identical blocks



IOActive, Inc. Copyright ©2015. All Rights Reserved.

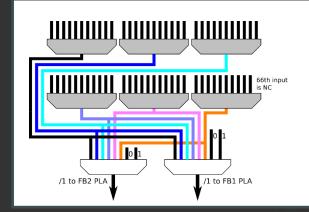
Thoughts so far

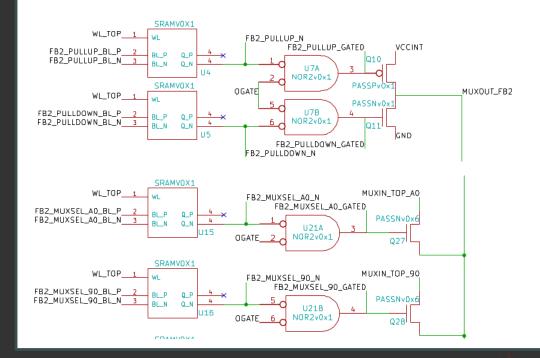
- Big driver at each side goes out to the PLA
 - Three-stage inverter (logically one NOT gate)
- Each of the eight blocks contains two SRAM cells
 - Maybe one for leftbound and one for rightbound?
- Six identical blocks, six groups of wires on M4
 - This seems promising...



Examining the pattern

- Each row of the routing fabric has six M3-M4 vias
 - Exactly one via under each of the M4 bus groups
 - But in a different place for each row
- Now we're getting somewhere
 - Routing matrix is not a full crossbar!
 - Sparse crossbar with only 6 connections possible per row
 - Different combinations for each one


Looking back at poly/M1


Putting it all together

- Each row is an 8:1 tristate bus mux
 - Constant zero (active low)
 - Constant one (active HIGH)
 - One signal from each group on M4 (6x active low)
- Global "OGATE" signal forces output high
 - NOR2s are to avoid bus fights between nets
- Rows are not identical, each one has different subset
 - Can use max-flow to assign signals to rows

Global routing schematic

Figuring out order of M4 bus

03 04

05

06

07 08

09 10

11 12

13

14

15 16

17

19 20

21

22

23 24

27

01 `timescale 1ns / 1ps
02 module test(clk 2048khz, led);

//Clock input

(* LOC = "P1" *) (* IOSTANDARD = "LVCMOS33" *) input wire clk 2048khz;

//LED out

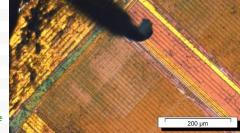
(* LOC = "P38" *) (* IOSTANDARD = "LVCMOS33" *) output reg led = 0;

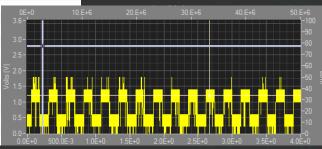
//Don't care where this is placed

reg[17:0] count = 0; always @(posedge clk_2048khz) count <= count + 1;</pre>

//Probe-able signal on FB2_5 FF at 2x the LED blink rate

(* LOC = "FB2_5" *) reg toggle_pending = 0; always @(posedge clk_2048khz) begin if(count == 0) toggle_pending <= !toggle_pending; end


//Blink the LED


always @(posedge clk_2048khz) begin if(toggle_pending && (count == 0)) led <= !led; end

29

30 endmodule

IOActive

A few last bits on layout

- M1/poly = gates
- M2 = local vert routing, SRAM BL, OGATE
- M3 = local horz routing, SRAM WL, mux outputs
- M4 = input bus. Bit ordering L-R:
 - FB1 GPIOs
 - Global input
 - FB2 GPIOs
 - FB1 FFs
 - FB2 FFs

Full PLA structure

- We now know almost enough to configure the PLA
- One last gotcha most pterms are dual purpose!
 - All can be used as general purpose logic
 - 48 have special connections to macrocells (3 each)
 - Used for set/reset, clock enable, etc
 - 4 have special connections to the whole FB
 - Use these to avoid use of lots of per-MC PTs
 - 4 appear to have no special use
 - Datasheet describes functions, but not which is which

Per-FB product terms

- Control Term Clock (CTC)
 - Per-FB clock (kinda like BUFH)
- Control Term Reset (CTR)
 - Per-FB reset
- Control Term Set (CTS)
 - Per-FB set
- Control Term Enable (CTE)
 - Per-FB output enable (for parallel buses etc)

Per-macrocell product terms

- Product Term A (PTA)
 - Can be used as FF set/reset
- Product Term B (PTB)
 - Can be used as IOB output enable
- Product Term C
 - Can be used as FF clock
 - Must be used as CE for DFFCE cells
 - Goes to macrocell XOR gate (see next slide)

Macrocell XOR gate

- Output from the PLA doesn't go directly to FF/IOB
- First, PLA output is XORed with...
 - Product Term C (or its complement)
 - Constant 1
 - Constant 0
- This allows for efficient adders, plus bypassing the OR array for slight speedup
- So... which product term is PTC?

Identifying PTC

- We can configure the PLA exactly as we want
- Copy black-box MC config bits from ISE bitstream that is known to use PTC
- Scan one PT at a time until we hit it
- Turns out, PTC for cell N is term 3N + 10

Identifying other pterms

- Still working on this
- Probably PTB, PTA are either
 - PTC+1,PTC+2
 - PTC-1,PTC-2
- And CT* are likely among the first few terms
- Too busy with "real work" to test this yet ☺

Global config bits

- There are 22 global config bits at middle of die
- 3 of them control I/O bank Vt
 - One global bit (XC2C32 backward compat)
 - One per-bank bit (used for 32A bitstreams)
- Rest control other misc stuff
 - Global clock (3), set/reset (2), output enable (8 bits)
 - IOB termination mode (1 bit, pullup/keeper)
 - Input-only pin config (2 bits)
 - Coding of most unknown as of now

libcrowbar

- BSD-licensed library for manipulating CR-II bitstreams
- Needs a lot of work and refactoring, but (kinda) works
- Only supports the 2c32a for now
- http://redmine.drawersteak.com/projects/achdsoc/repository/show/trunk/src/crowbar

Libcrowbar usage example

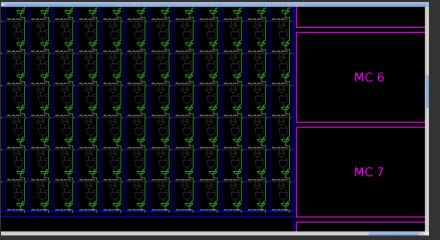
//Get the IOBs

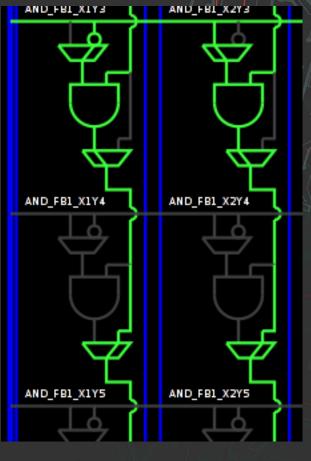
FCCoolRunnerIIIOB* iob_gpiol0 = static_cast<FCCoolRunnerIIIOB*>(device.GetIOBForPin("P8")); FCCoolRunnerIIIOB* iob_gpiol1 = static_cast<FCCoolRunnerIIIOB*>(device.GetIOBForPin("P6")); FCCoolRunnerIIIOB* iob_led1 = static_cast<FCCoolRunnerIIIOB*>(device.GetIOBForPin("P38")); FCCoolRunnerIIIOB* iob_led2 = static_cast<FCCoolRunnerIIIOB*>(device.GetIOBForPin("P37")); printf("IOB assignment\n"); printf(" IOB for FTDI_GPIOL0 is at %s\n", iob_gpiol0->GetNamePrefix().c_str());

printf(" IOB for FTDI_GFIOLD is at \$s(n", iob_gpiolo->GetNamePrefix().c_str()); printf(" IOB for FTDI_GFIOL1 is at \$s(n", iob_led1->GetNamePrefix().c_str()); printf(" IOB for LED1 is at \$s(n", iob_led1->GetNamePrefix().c_str()); printf(" IOB for LED2 is at \$s(n", iob_led2->GetNamePrefix().c_str());

//GPIOL0: LVCMOS33 input

iob_gpiol0->m_iostandard = FCCoolRunnerIIIOB::LVCMOS33; iob_gpiol0->SetInZ(FCCoolRunnerIIIOB::INZ_INPUT); iob_gpiol0->SetOE(FCCoolRunnerIIIOB::OE_FLOAT); iob_gpiol0->SetTerminationMode(FCCoolRunnerIIIOB::TERM_FLOAT); iob_gpiol0->m_bSchmittTriggerEnabled = false;


//GPIOL1: unregistered LVCMOS33 output


iob_gpiol1->m_iostandard = FCCoolRunnerIIIOB::LVCMOS33; iob_gpiol1->SetInZ(FCCoolRunnerIIIOB::INZ_FLOAT); iob_gpiol1->SetOE(FCCoolRunnerIIIOB::OE_OUTPUT); iob_gpiol1->m_outmode = FCCoolRunnerIIIOB::OUTPUT_DIRECT; iob_gpiol1->SetTerminationMode(FCCoolRunnerIIIOB::TERM_FLOAT); iob_gpiol1->SetSlewRate(FCCoolRunnerIIIOB::SLEW_FAST); iob_gpiol1->m_bSchmittTriggerEnabled = false;

fcplan

- Floorplanner / physical layout viewer
- Currently supports AND array and global routing only

OActive

plan	Elving Crowbar II		vvice X2CDA+6V(14)	
	PTERM 25 PTERM 26 PTERM 26 PTERM 28 PTERM 29 PTERM 31 PTERM 31 PTERM 31 PTERM 35 PTERM 45 PTERM 44 PTERM 44 PTERM 46 PTERM		PTERM 56 PTERM 56 PTERM 56 PTERM 54 PTERM 54 PTERM 50 PTERM 48 PTERM 48 PTERM 48 PTERM 48 PTERM 48 PTERM 40 PTERM 40 PTERM 38 PTERM 38 PTERM 38 PTERM 38 PTERM 38 PTERM 38 PTERM 38	PTEAN_29 PTEAN_29 PTEAN_27 PTEAN_26 PTEAN_25 PTEAN_23 PTEAN_23
		GLOBAL CONFIG		
	M, 25 M, 25 M, 26 M, 28 M, 28 M, 28 M, 28 M, 28 M, 39 M, 39 M, 44 M, 45 M, 45 M, 45 M, 45 M, 55 M, 55		M_55 M_55 M_55 M_55 M_55 M_56 M_56 M_48 M_48 M_48 M_48 M_48 M_48 M_48 M_48	M_29 M_29 M_28 M_25 M_25 M_23

Acknowledgements

- John McMaster (siliconpr0n)
 - CNC microscopy, sample prep
- Ray Dove (RPI)
 - SEM/FIB access and training
- Bryant Colwill (RPI)
 - Cleanroom/microprobe access and training
- Siliconpr0n.org team
 - Lots of helpful advice and feedback

Live demo

IOActive, Inc. Copyright ©2015. All Rights Reserved

Future work (RE)

- Figure out remaining special product terms
- Figure out rest of macrocell bits
- Figure out rest of global bits
- Support larger devices
 - Routing matrix via ROM varies across device densities
 - New macrocell features in \geq 128 MC devices

Future work (toolchain)

- Add support for OR array etc to fcplan
- Yosys -> libcrowbar bridge for RTL synthesis
- Improve decompiler
 - Higher-level structure extraction (adders, etc)

Questions?

IOActive, Inc. Copyright ©2015. All Rights Reserved