
UNDERSTANDING SWIZZOR’S
OBFUSCATION

Pierre-Marc Bureau – bureau@eset.sk
Joan Calvet - j04n.calvet@gmail.com

1



Swizzor

 Present since 2002 !

 AV companies receive hundreds of new
binaries daily.

 Nice icons :

 Little publicly available information.

2



Presentation Outline

 Introduction

 The packer

 The heart of Swizzor

 Conspiracy theories

3



Welcome in Swizzorland !

At first sight :

 Standard Win32 binary

 Clean compiler signature with a nice “WinMain()”

 Long list of imports

 Statically linked with the C standard library (msvcrt)

Sounds cool! But if you try to disassemble it and dig 
deeper, you could see…

4



5



6



7



This is the packer !

 Between 40 M and 100 M CPU instructions.

 Objective : protect the original code which is the 
heart of Swizzor against:

 Manual reverse-engineering

 Detection by security products

8



Problem

 We want to understand what’s is going on inside :

 The packer

 The heart of Swizzor (original executable)

 But :

 It seems difficult (cf. previous slides)

 We are newbies

9



 Context:

 Mono-thread, 32 bits binary.

 Less than 1% of API calls :

Not enough to understand API calls, need to think at  
assembly level.

 Only one layer of code : no dynamic code before the 
unpacked binary.

 The packer layer for one binary will have the same 
behavior over multiple executions :

The addresses are the same inside the main module (in 
particular the ones used to access the data section)

First step : the packer

10



 Set of tools:

 A tracing engine which is going to collect 
« information » for us

 Some tools to exploit the collected 
information:
 Visualization to quickly identify interesting 

patterns or recognize already seen behaviors.

 Heuristic engine based on previous knowledge.

Proposed solution (1)

11



 Work process:

 Tracing step: once per binary, it outputs two files:

 Improved trace : detailed view.

 Events file : high level view.

 Analysis step: standard RE work but directed by the 
previously collected information.

Proposed solution (2)

12



 Pin : dynamic binary instrumentation framework:
 Insert arbitrary code (C /C++) in the executable (JIT

compiler).

 Rich library to manipulate assembly instructions, basic
blocks, library functions…

 Deals with self-modifying code.

 Check it at http://www.pintool.org/

 But what information do we want to gather at
run-time ?

Tracing engine

13

http://www.pintool.org/
http://www.pintool.org/
http://www.pintool.org/
http://www.pintool.org/
http://www.pintool.org/
http://www.pintool.org/
http://www.pintool.org/
http://www.pintool.org/
http://www.pintool.org/
http://www.pintool.org/


 Swizzor binaries have a data section of more
than 10KB and weird stuff inside.

 It would be interesting to see the actual access
made by the code in this section.

 Easy to do with PIN, cf. documentation.

 BTW, most of these access are hard to decide
statically.

1. Memory Access

14



 PIN provides an API to deal with system calls, but
we are more interested in the APIs functions
that actually perform system calls…

 Detection of API calls:

 Dynamic linked library : PIN functions like

RTN_FindNameByAddress()

 Statically linked library: use IDA Flirt.

2. API calls (1)

15



 Detecting is cool, but we can do better : dump 
arguments and return values!

 Function prototypes given in entry of the PIN tool:

 Instructions for dumping:

 Basic types:

 Complex types:

HMODULE GetModuleHandleA(IN LPCSTR);
BOOL GetThreadContext(IN HANDLE,IN_OUT LPCONTEXT);
WCHAR_T* wcschr(IN WCHAR_T*,IN WCHAR_T);
…

INT D4
CHAR* SA
PDWORD I4
…

API calls (2)

SECURITY_ATTRIBUTES D[DWORD,LPVOID,BOOL]
LPSECURITY_ATTRIBUTES I[SECURITY_ATTRIBUTES]
…

16



 Why is it interesting ?

 Most of the time, a loop does one thing:
decrypting data, resolving imports, containing
other loops…

 In a « divide and conquer » approach, a loop
can thus be considered as an independent
sub-problem.

3. Loops

17



Loops in Swizzor!

More than 95% of the packer code is in loops !
18



EXECUTED TIME

INSTRUCTION1 1

INSTRUCTION2 2

INSTRUCTION3 3

INSTRUCTION1 4

INSTRUCTION2 5

… …

When tracing a binary, can we define a loop as the 
repetition of an instruction ?

Loops: How to detect them ? (1)

(SIMPLIFIED) STATIC POINT OF VIEW PIN TOOL POINT OF VIEW

19



Loops: How to detect them ? (2)

(SIMPLIFIED) STATIC POINT OF VIEW PIN TOOL POINT OF VIEW

EXECUTED TIME

INSTRUCTION1 1

INSTRUCTION5 2

INSTRUCTION6 3

INSTRUCTION2 4

… …

INSTRUCTION3 5

INSTRUCTION5 6

INSTRUCTION6 7

This is not a loop ! So what’s a loop ?
20



PIN TOOL POINT OF VIEW

EXECUTED TIME

INSTRUCTION1 1

INSTRUCTION2 2

INSTRUCTION3 3

INSTRUCTION1 4

INSTRUCTION2 5

INSTRUCTION3 6

INSTRUCTION1 7

… …

What actually define the loop, is the back edge between 
instructions 3 and 1.

Loops: How to detect them ? (3)

(SIMPLIFIED) STATIC POINT OF VIEW

21



Loops: How to detect them ? (4)
 In our dynamic world a back edge is an instruction 

pair (Leader, Tail) where:

 The Leader has been first executed.

 The Tail is executed just before the Leader at least 
two times.

 Thus we detect on the fly the (Leader,Tail) pair, i.e. 
the loops.

 Detecting loops is cool but we can do better : collect 
the addresses that have been read and written by 
the loop ! 22



4. Exceptions

 Between 5 and 10 exceptions in a standard
Swizzor packer.

 Detect them by instrumentation of 
KiUserExceptionDispatcher()

 Dump the error code of the exception with the
fault address.

23



5. Dynamic code

 If code is executed outside of either the main
module or shared libraries, we detect it as
dynamic code (remember : no dynamic code
inside the main module for Swizzor!)

 Identify the instruction which transfers control
to new code.

24



6. Swizzor “calculus”

 A “calculus” is a small block of code which
makes calculations on its argument and returns
the result (no memory modification, no API,
etc).

 We detect them with a simple heuristic in our
PIN tool :

 Between 7 and 20 instructions.

 More than 40% of arithmetic instructions
(XOR/ADD/SUB).

 Ends with a RETURN instruction.

 We store where the result is written.
25



Output 1: improved trace
...
[6][00404117] mov dword ptr [ebp-0x40], eax W 0x0012FBF0
[7][0040411A] callAPI OpenMutexW

| A1: [DWORD] 0x001F0001
| A2: [BOOL] 0x00000001
| A3: [LPCWSTR] "XJLFOQ"
| RV: [HANDLE] 0x00000000

...
[59][004041D2] callM calcul1
[60][004041D7] mov ecx, eax
...
[93][0040310F] callAPI _snwprintf

| A2: [SIZE_T] 0x00000190
| A3: [WCHAR_T*] "%4u ange %04x ( %x"
| RV: [INT] 0x00000018
| A1: [WCHAR_T*] "1216 ange f92c6aeb ( 16c"

[94][00403114] add esp, 0x18
[95][00403117] push dword ptr [ebp-0x28] R 0x0012FC08
...
[1490][0040C136] mov dword ptr [edi], 0x6 W 0x000003E8
!! EXCEPTION !!
...

26(Easy to look for regular expressions inside the trace!)



Output 2: events file

[=> EVENT: CALCULUS <=][TIME: 294][@: 0x00402E3A]
| M: calcul4
| W: 0x0012FB8C

[=> EVENT: API CALL <=][TIME: 299][@: 0x00402FC2]
| F: malloc
| A1: [SIZE_T] 0x00002A84
| RV: [VOID*] 0x023A6E38

[=> EVENT: LOOP <=][START:634 - END:1381][LEAD@:0x0040F62A - TAIL@:0x0040F41C]
| TURN: 57
| READ ZONES: [0x0042A8A5-0x0042A8EC: 72 B]

[0x0042A579-0x0042A5F4: 124 B]  
[0x00426234-0x0042623F: 12 B]

| WRITE ZONES: [0x0042A8A5-0x0042A8EC: 72 B]  
[0x0042A579-0x0042A5F4: 124 B] 
[0x00428440-0x00428447: 8 B]

[=> EVENT: EXCEPTION <=][TIME: 1490][@: 0x0040C136]
| EXCEPTION CODE: 0xc0000005 (STATUS_ACCESS_VIOLATION)

27



Output 2: timeline!

http://www.simile-widgets.org/timeline/

28

 Between 400 and 600 events in a standard
Swizzor packer.

 Not easy to read in a plain text file.

 Build a “timeline” by using the Timeline widget 
from the MIT :

http://www.simile-widgets.org/timeline/
http://www.simile-widgets.org/timeline/
http://www.simile-widgets.org/timeline/


29

SMALL 
UNIT OF 
TIME

BIG UNIT
OF TIME

TIME



30



Enough with the tools, what 
about the packer?

31



Era 0: FUD

32

Useless malloc !



Era 1: Prepare the packer

Example of simple loop

33



KEY

CONTROL STRUCTURES
DECRYPTED AREAS

Era 1: Example of simple loop (2)

34

Memory profile : [#Read,#Write,#Call/Jmp]



Era 1: Example of simple loop (3)

35



+3

+3
 Read clusters jump 

over 3 bytes !

 Big write zone.

Era 1: 
More original loops

36



Era 1:  More original loops (2)

 Check the code:

Simple, no ?

37



Era 1:  More original loops (3)

Check this one :

Seems more 

complicated!

START

END

38



Era 1:  
More original loops(4)

+2

+2But here are the 

characteristics we

gathered.

Exact same type of algorithm!

We only care about the write 

zone.

39



Era 2:  Set up the unpacked code

40

Remember that ?



41

Era 2:  Set up the unpacked code (2)

Let’s take a closer look:

A binary tree where the path is built with 
successive addition plus JZ/JB.



42

Era 2:  Setup the unpacked code (3)

 It has the shape of a binary tree.

 At each node, a 4-bytes value (the counter) is added 
with itself, then it checks if the result:

 Is zero (JNZ/JZ)

 Has overflowed (JB/JNB)

 If the result is zero it takes the next 4-bytes value.

 Somewhere in the function, there are some loops that 
calculate one byte depending also of the counter (ADC), 
this is the decrypted byte.

 These functions is implemented differently three times 
in one Swizzor binary for data, rdata and text sections, 
but that stays the exact same algorithm!



43

Era 2:  Set up the unpacked code (4)



Era 2:  Set up the unpacked code (5)

 As the unpacked binary is normally mapped at
0x400000, it needs to patch all the absolute
address.

 A patch table for each dynamic area:

44



Packer miscellaneous

 Checks the kernel32 timestamp against the Windows 95 
explorer.exe timestamp!

 Checks the first 4 bytes of the return value of
RtlDecodePointer() against hardcoded values.

 Looks for certain functions in kernel32 export table by
means of signatures and deal with forward exports.

 Looks also in the import table of some modules! For
example the ADVAPI32 functions are found in the
import table of RPCRT4.

45



SWIZZOR’S UNPACKED CODE

46



Hidden Code

 Millions of different files

 Probably all produced by the same gang

 Droppers

 Updaters

 Advertisement delivery

 Many common characteristics

47



Typical Installation

1. Dropper creates registry entries with 
affiliate ID and software version

2. Dropper launches updater

3. Updater downloads second stage according 
to affiliate ID

4. Second stage is responsible for ad delivery

48



Typical Install Process

Adware 
Delivery

Updater

Dropper

49



Code Injection 

50



Code Injection

str1 = RegQueryValueA( 

"InternetExplorer.Application“);

str2 = GetModuleFileNameA(NULL);

str1 = GetShortPathName(str1);

str2 = GetShortPathName(str2);

if(strcmpA(str1, str2) != 0)

inject_and_exit();

51



String Encryption

 All strings are encrypted 
(xor)

 Decrypted “on the fly” 
before usage

 The first character of the 
key is indicated by the first 
2 chars of the encrypted 
string

 Same string = multiple 
encrypted versions

52



String Decrypting

 Used to encrypt network communication

 XOR key is always the same

53

647B644E9BB73ED09CFC6721AE0D19196E

EB186D66B9B204B8D3FDA4700F87FB6EF9

70000019:5.61msn:United States



Advertisement Delivery 

54



Advertisement

55



Updater

 References to all 
affiliate IDs

 Generate unique 
installation ID

 Contacts LOP servers

http://%s/bins/int/7k42_up2.int

56



Host File Modifications

 Upon installation, 
etc/host file is modified

 Domain blacklist is 
removed

 If you can decrypt the 
strings, you have a 
complete list of 
domains related to this 
company

57



Dark Connections

58



C2 Media / LOP.com

 Advertising:

 Pop ups

 Toolbars

 Search engine

 All software delivered by this company uses 
Swizzor  type obfuscation (even their 
uninstaller)

59



GodLikeProductions.com

 Conspiracy theorist discussion forum

 Bought by lop.com, probably to distribute 
advertisement and attract traffic

 Change post contents

 Bunny = lop.com

 Flower = spyware

 Reachable from lop.com (chat page)

60



Conclusions

 Complex target

 Millions of (sometimes useless) instructions

 Multiple binaries per installation

 Solutions

 Enhanced tracing

 Visualization

 Fun!

61



THANK YOU!

Pierre-Marc Bureau – bureau@eset.sk
Joan Calvet - j04n.calvet@gmail.com

62


