
Escaping The Sandbox
(Summer 2010)

SyScan-EuSecWest-ReCon

Stephen A. Ridley
Senior Researcher Matasano Security

stephen@sa7ori.org
@s7ephen (Twitter)

Thursday, July 15, 2010

mailto:stephen@sa7ori.org
mailto:stephen@sa7ori.org

Who I am.
Stephen A. Ridley

Senior Security Researcher (Matasano)

• Previously: Senior Security Architect at McAfee, founding member of
Security Architecture Group

• Prior to that: Researcher at leading Defense contractor. Directly supported
U.S. Defense and Intelligence communities in realm of software exploitation
and software reverse engineering

• Columnist for/interviewed by IT magazines (Wired, Ping!, Washington Post)
• Kenshoto DefCon CTF organizers for a few years
• blog: http://www.dontstuffbeansupyournose.com
• Guest Lecturer/Instructor (New York University, Netherlands Forensics

Institute, Department of Defense, Google, et al)
• My Focus: software reverse engineering, software development, software

exploitation, software security, Kernels (Microsoft ones for now).
Increasingly interested in embedded systems and mobile devices

Thursday, July 15, 2010

What am I talkin’ ‘bout today?
★ Sandboxing Overview (very brief ;-)

• Goals, Sandbox Architecture (Chrome)

★ Sandboxes from a User-space Perspective
• Securable Objects and SID apertures
• Patches/Hooks/Interception
• user32 issues

★ Sandboxes from a Kernel-space Perspective
• Between User-space and Kernel-space
• Kernel supported “Quasi Securable Objects”, Native API
• Job Objects handle the rest, or do they?

★ Tools/Techniques/Demos
• SandKit Toolkit (code injection, copymem, memdiff, hookfix,

sa7shell, bincompare, dumptoken, tokenbrute, handlebrute)
• Using Sandbox PoC Project (from Google)
• Using kernel debugger while attacking Chrome
• Triggering Chrome Bugs and where to start

Thursday, July 15, 2010

Presentation Focus
★ Sandbox implementations are (by their nature) strongly

coupled to the Operating System

★ This presentation focuses on Microsoft Windows
Operating Systems and the NT Kernel (XP and Vista)
• Side Note: Check out OSX’s DAC/Sandbox. (“man sandbox-exec”,

“ls /usr/share/sandbox”) It’s pretty awesome! Scheme-like rules sent to
a DAC engine with a Scheme-like interpreter in the Kernel! Nice idea!

★ This presentation uses Google Chromium because it’s
the most popular of the Sandbox implementations.

★ Focus on blackbox/reversing approach to sandboxing
technologies (less source source audit of IPC
mechanisms, etc). For that approach see Azimuth
Security’s excellent “The Chrome Sandbox” series)

Thursday, July 15, 2010

Sandboxing Overview

Thursday, July 15, 2010

The Goal of the Sandbox

★ Localize the damage by “containing” potentially
malicious code

★ Trapping malicious code is nuanced and tough but
from a high level it consists mostly of:

• Locking down all IPC mechanisms
• Perform process monitoring
• Basically not trusting any code within the Sandbox to

do anything on the system without it first being
checked by some authority

Thursday, July 15, 2010

Chromium Sandbox Architecture

• A great number of resources currently exist on the architecture and
design of sandboxes in general, especially for Google Chromium. Not
going to echo-chamber.

• Mark Dowd and the team at Azimuth Security began releasing
Sandboxing papers that happened to coincide with my talk and paper:
http://blog.azimuthsecurity.com/2010/05/chrome-sandbox-part-1-of-3-
overview.html

• Google Chrome Design Documents: http://www.chromium.org/
developers/design-documents

• The Chromium Design Docs are all you really need, but other small bits
can be gleaned from Infosec bloggers and research papers (Robert
Hensing, David Leblanc, Nicolas Sylvain, and others). Not much
actual code/tools/techniques/examples have been released though,
this talk hopefully will help with this.

Thursday, July 15, 2010

http://blog.azimuthsecurity.com/2010/05/chrome-sandbox-part-1-of-3-overview.html
http://blog.azimuthsecurity.com/2010/05/chrome-sandbox-part-1-of-3-overview.html
http://blog.azimuthsecurity.com/2010/05/chrome-sandbox-part-1-of-3-overview.html
http://blog.azimuthsecurity.com/2010/05/chrome-sandbox-part-1-of-3-overview.html
http://www.chromium.org/developers/design-documents
http://www.chromium.org/developers/design-documents
http://www.chromium.org/developers/design-documents
http://www.chromium.org/developers/design-documents

Chromium Sandbox Architecture

Credit: Gartner and Google Chrome

Thursday, July 15, 2010

Locking down IPC and IO
★ The Operating System is what does all the “hard work”

for permissions and restrictions. Developers don’t need
to reinvent this technology these days.

★ In the NT Kernel this is handled by using the DACL
system built into the Object Manager and Security
Reference Manager

★ These two components of the NT kernel implement
and enforce the permissions system for “NT Securable
Objects” like:
• Files
• Processes
• Shared Memory Regions
• Lots more...

Thursday, July 15, 2010

Locking down IPC and IO

★ IO and IPC on Windows is performed predominantly
using these NT Objects. I really realized this more, the
more kernel stuff I began doing.

★ “Almost everything in userspace is an NT Object, or is
at some point supported by one.”....but there are still
gaps. “Quasi-securable Objects”

★ Most of the functionality for interfacing with/
manipulating these NT Objects is implemented within
the Native API
• Think: OpenFile, OpenProcess, CreateFile, CreateProcess,

CreateThread, or basically anything in ntdll or kernel32)

★ There are some other public techniques for performing
faux-IPC. (we will review these and some less popular
ideas/techniques)

Thursday, July 15, 2010

Sandboxes from a User-space
Perspective

Thursday, July 15, 2010

As malicious code, what would you
try first?
★ Accessing Out of Proc COM Servers?
★ Accessing WMI Interfaces?
★ Writeable locations on the disk?
★ Injecting into Other processes (reading/writing other

process memory)?
★ Loading Drivers?
★ Accessing LPC/RPC/LRPC endpoints?
★ Accessing NamedPipes?
★ Accessing RunAs Service?
★ sending User32 messages?
★ ...lots of other stuff?
★ Let’s See Why Most of this Won’t Work!

Thursday, July 15, 2010

BLOCKED!
★ These things are all good places to start. In fact we

will demonstrate a new tool in the SandKit that you
can use to assist with these kinds of tests. In other
implementations you will mostly likely find bugs here.

★ HOWEVER, virtually all of these operations under the
hood are (or are supported by) Securable Objects
which fall under the purview of the Object Manager
and Security Reference Manager.

★ Therefore, the proper restrictions on security
descriptors will kill access to these in one fell swoop!

Thursday, July 15, 2010

As malicious code, what would you
try first?

★ Accessing Out of Proc COM Servers?
★ Accessing WMI Interfaces?
★ Writeable locations on the disk?
★ Injecting into Other processes (reading/writing other

process memory)?
★ Loading Drivers?
★ Accessing LPC/RPC/LRPC endpoints?
★ Accessing NamedPipes?
★ Accessing RunAs Service?
★ sending User32 messages?

COM is NamedPipes
WMI is COM which is LPC/NamedPipes
Handles and IO objects are securable.

Processes/Threads/IO objects are securable.

LPC/LRPC/RPC sit on NamedPipes
NamedPipes are obviously securable

ShellExecuteA(“runas”) is LPC/NamedPipe to LSASS
User32 partitioned by “Desktop” and user32
handles are restricted by Job Object (XP) UAC
(Vista)

SCManager is all LPC/NamedPipes also
“Load Driver” token perm covers it

Thursday, July 15, 2010

Bootstrapping the Sandbox
“The beginning is a very delicate time...”

Frank Herbert’s Dune

★ The Broker starts all the Sandbox processes.

★ The “Broker” process is the Overseer, he starts the
“Sandbox” processes.

★ The Broker performs “privileged” actions on behalf of
Sandbox processes via code hooks and IPC mechanisms.

★ Let’s review the steps the Broker goes through when
bootstrapping the Sandbox.

Thursday, July 15, 2010

Bootstrapping the Sandbox

1. Before spawning Sandbox, the Broker process creates a
restricted token using: CreateRestrictedToken() with the
‘SidsToRestrict’ array populated.

2. The Broker uses CreateProcess() with the fdwCreate
argument set to CREATE_SUSPENDED and the restricted
token to start sandbox “frozen”.

3. It is during this suspended time that the Broker then
further restricts the Sandbox process by:
1. Installing hooks (we will review these shortly)
2. Performing some other setup

We’ll see later that the Broker also continues to “debug” the Sandbox process,
catching his exceptions! Annoying for your fuzzing huh? ;-)

Thursday, July 15, 2010

4. The Broker further adjusts the Sandbox’s Token with
AdjustTokenPrivileges()

5. The Broker places the Sandbox into a very restrictive
Job Object by setting restrictive members of
JOBOBJECT_BASIC_UI_RESTRICTIONS when calling
SetInformationJobObject()

6. The Broker can then place the Sandbox into its own
Desktop (depending on which “type” of Sandboxed
process it is) if XP, or on Vista set low integrity token
and use User Interface Privilege Isolation (UIPI which
is just “UAC” stuff)

7. The Broker does other stuff I probably didn’t notice
(or am forgetting ;-) and then resumes the Sandbox’s
main thread.

Bootstrapping the Sandbox

Thursday, July 15, 2010

★ Example from “Sandbox PoC” in Chrome Source Code
(/home/chrome-svn/tarball/chromium/src/sandbox/sandbox_poc/main_ui_window.cc)

Bootstrapping the Sandbox

Thursday, July 15, 2010

Restricted Token
★ The restricted token pretty much will handle restricting

the vast majority (~95%) of the things malicious code
will try to do:
• COM Interfaces
• Files
• Processes
• Shared Memory Regions
• Named Pipes
• Load Drivers (access Drivers)
• LPC/LRPC endpoints

★ When implementing a sandbox however, this doesn’t
mean all the work is done for you, you still have to
build strong “filter” policies for the Policy Engine!

★ A hole in your SID filters and the whole sandbox falls
apart!

Thursday, July 15, 2010

Restricted Token ::CreateRestrictedToken()
/home/chrome-svn/tarball/chromium/src/sandbox/src/restricted_token_utils.cc

All these “SIDs” defined in:
WELL_KNOWN_SID_TYPE
ENUM (see MSDN for more

info)

Thursday, July 15, 2010

The Job Object: SetInformationJobObject()
★ The restrictions on the Job Object will generally handle

restricting the “other” ~4.999% of things malicious code
might try to do:
• Accessing/Writing Clipboard (JOB_OBJECT_UILIMIT_READCLIPBOARD)
• Switching/Accessing other Desktops (JOB_OBJECT_UILIMIT_DESKTOP)
• Accessing other USER32 Handles (JOB_OBJECT_UILIMIT_HANDLES) This

kills all user32 messaging basically and techniques: SetWindowsHookEx,
OpenWindow(), PostMessage(), SendMessage(), PeekMessage())

★ The Job Object restrictions also breaks some less
popular techniques:
• SendMessageCallback()
• GlobalAtom access (JOB_OBJECT_UILIMIT_GLOBALATOMS)
• ChangeDisplaySettings()

Thursday, July 15, 2010

The Separate Desktop

★ Placing the sandboxed application on a separate
desktop is mostly an “XP” (pre-UAC/UIPI
technique)

★ On XP, user32 functions take only “window
handles” as arguments.

★ Window Objects are grouped in “Desktops”, so
intra-Desktop messaging by Objects, was not
possible w/out switching.

★ Vista UIPI/UAC fixes this

Thursday, July 15, 2010

Atom Tables & GlobalAtoms
★ What is the deal with Atom Tables? (InitAtom(),

AddAtom(), FindAtom(), etc)

★ Designed originally to support Microsoft DDE (Dynamic
Data Exchange).

★ Essentially is a “kernel supported” key/value storage
mechanism for simple primitives (strings and integers)

★ Atom Tables are generally stored on “per process” basis
But you can create “Global Atoms” which are accessible
by any process. (GlobalAddAtom(), GlobalFindAtom(),
etc)

Note: Sample code for Atoms included in SandKit
Thursday, July 15, 2010

GlobalAtoms: (excerpt from Sandkit tool)

Thursday, July 15, 2010

GlobalAtoms

★ GlobalAtoms can thus be used a rudimentary form of
IPC.

★ MANY standard Microsoft APIs and DLLs use Atom
Tables.

★ How many Third Party applications misuse them?

★ Misuse of AtomTables is like the misuse of User32
WM_USER: Insecure usage happens when
developers use it as a form of “quick and dirty” IPC.

Thursday, July 15, 2010

The Lesson GlobalAtoms teach us:

★ While GlobalAtoms are a known technique with a known
mitigation, the “pattern” is a lesson:

★ GlobalAtoms are essentially just Kernel/Native API
supported storage mechanisms.

★ Are there more?
★ If so, they can probably be found anywhere there is

something abstracted to be accessed via a “descriptor”
from userland functions.

★ Places to start?
• NTOSKRNL export “names” list in IDA,
• MSUICHE’s MSDN (http://msdn.msuiche.net),
• ReactOS, Third-Party Drivers
• Ionescu’s “Native NT Toolkit code”
• Gary Nebbett’s Native API Reference
• Break on ObCreateObject() and see who dynamically creates objects.

Thursday, July 15, 2010

http://msdn.msuiche.net/winxpsp3_x86/
http://msdn.msuiche.net/winxpsp3_x86/

The Hooks: Call Interceptions
“- my one's and my two's got your whole town shook;

You betta listen to your corner, and watch for the hook!”
 --Cool Breeze/Goodie Mob/Outkast

“Watch For the Hook”

★ Intended as a mechanism to assist the Broker/
Sandbox Policy Engine NOT an enforcement
mechanism itself (so they say).

★ In Chromium developer parlance the act of calling into
the Broker via IPC mechanisms is called a “CrossCall”.

★ All library hooks generally reroute to stubs that
ultimately perform CrossCalls to the Broker

★ The code responsible for “interceptions” is
implemented in the Interception Manager

Thursday, July 15, 2010

Thursday, July 15, 2010

Identifying Hooks

★ Finding them is easy manually, but SandKit has tools to
help you do it automated. “memdiff” in SandKit will
compare the same region of memory in two separate
processes and log differences.

★ Windbg .writemem command and simple Python/Ruby/
whatever script can do this as well. Something like the
following (in both the sandbox and broker Windbg
sessions):

Thursday, July 15, 2010

After diffing native library dumps you’ll
find hooks like:

From NTDLL:
ZwCreateFile()
NtOpenFile()
ZwOpenProcess()
ZwOpenProcessToken()
ZwOpenProcessTokenEx()
NtOpenThread()
ZwOpenThreadToken()
NtOpenThreadTokenEx()
ZwQueryAttributesFile()
ZwQueryFullAttributesFile()
NtSetInformationFile()
many many more

Many other libraries are hooked as well.

Page permissions kinda imply PE
section. We only care about .text

Thursday, July 15, 2010

Thursday, July 15, 2010

The Hooks: In the source.
★ Although the Chome Sandbox source (as a framework) is

BSD licensed and open as are all the policies and rules
used in the Chrome distribution.

★ It may not seem particularly evident when you look
through source because you will probably only see
references to Interception Manager in test code.

/home/chrome-svn/tarball/chromium/src/sandbox/src/interception_unittest.cc

Thursday, July 15, 2010

TANGENT: The Hook Catch22

★ Google Chromium Team has long asserted that hooks
themselves are not to be relied upon a security
enforcement mechanism. This shows they “get it”.
Hooks can be unhooked.

★However one thing to note is the effectiveness of the
“VirtualProtect()/WriteProcessMemory() hook Catch 22”

which is:
Malicious code executing in the sandbox would have to use

GetCurrentProcess()/VirtualProtect()/WriteProcessMemory() to
“unhook”.

What if these functions are already hooked? In my opinion,
this might be a significant hurdle to deter most exploit

developers.

Thursday, July 15, 2010

TANGENT: The Hook Catch22

★ To circumvent the GetCurrentProcess()/VirtualProtect()/
WriteProcessMemory() catch 22 a malware author could
just use syscalls directly, and completely circumvent the
library hooks

★ FEATURE REQUEST? Why doesn’t Microsoft expose
functionality for Syscall restriction/filtering on per-
process bases? Other lesser sandbox technologies (like
those for *nixes and SandboxIE use this as the core)
• Win7/Vista already kinda has some close with the less known

EPROCESS.ProtectedProcess

★ Does EPROCESS.ProtectedProcess prevent:
WriteProcessMemory(GetCurrentProcess()) ?

Thursday, July 15, 2010

Finding Hooks Via Call Traces
★ Although more annoying to do, you can find hooks using call tracing.
★ I do my kernel call-tracing using custom tools or in Windbg:

bp /p <cid of target> kernel32!CreateFileW "du poi(@esp+4);.process;k;g"
Alternatively for Win7 targets you might have to: .process /I /r <cid of target> THEN

bp kernel32!CreateFileW "du poi(@esp+4);.process;k;g"

★ If you are in user-space and want a “point and click” call-
tracer, I suggest the surprisingly unpopular but extremely

powerful: AutoDebugPro

Checkboxes for functions
to filter on

Thursday, July 15, 2010

Moving closer to kernel/user gap.
★ As we tunnel down to observe the Native API hooks

put in place by the Broker we see that many of these
are the Zw* Nt*

★ These are obviously the functions which are at the
“edge of the precipice” between userland and kernel,
one or two steps away from SysEnter/SysCall/INT 2e/
call gate/etc

★ This is where things get interesting and is perfect
segue into how we can investigate Sandboxes from
up in the Kernel.
(Kernel space is so much more relaxing. Its“quieter”.)

Thursday, July 15, 2010

Sandboxes from a Kernel-space
Perspective

Thursday, July 15, 2010

Why Look at Sandboxes from Kernel?
★ Perhaps investigating the relationship between

Userspace/Kernelspace will reveal new attack surface.

★ It’s so much “quieter” in the Kernel. It is a nice reprieve
from the hustle and bustle of User-space.

★ More control: Pause execution and the whole box
freezes. This means the Broker AND the Sandbox, no loss
of “sync”.

★ Windbg Kernel Debugger (Kd) has commands we can’t
use from User-space.

★ Virtually everything on Windows is performed
predominantly using NT Objects, all inspectable from Kd.

Thursday, July 15, 2010

(credit) Microsoft TechNet

Thursday, July 15, 2010

Kernel Components (refresher!)

★ Object Manager (OB)
★ Security Reference Monitor (SE)
★ Process/Thread Management (PS)
★ Memory Manager (MM)
★ Cache Manager (CACHE)
★ Scheduler (KE)
★ I/O Manager, PnP, power, GUI (IO)
★ Devices, FS Volumes, Net (DRIVERS)
★ Lightweight Procedure Calls (LPC)
★ Hardware Abstraction Layer (HAL)
★ Executive Functions (EX)
★ Run-Time Library (RTL)
★ Registry/Consistent Configuration (CONFIG)

Thursday, July 15, 2010

Kernel Components (refresher!)

★Object Manager (OB)
★Security Reference Monitor (SE)
★ Process/Thread Management (PS)
★ Memory Manager (MM)
★ Cache Manager (CACHE)
★ Scheduler (KE)
★ I/O Manager, PnP, power, GUI (IO)
★ Devices, FS Volumes, Net (DRIVERS)
★ Lightweight Procedure Calls (LPC)
★ Hardware Abstraction Layer (HAL)
★ Executive Functions (EX)
★ Run-Time Library (RTL)
★ Registry/Consistent Configuration (CONFIG)

For Sandboxing
technologies, these
are mostly what we

care about.
Thursday, July 15, 2010

Here’s why OB/SE/IO matter most:

Thursday, July 15, 2010

The NT Object Manager (OB):

★ Provides underlying NT namespace

★ Unifies kernel data structure referencing

★ Unifies user-mode referencing via handles/descriptors

★ Central facility for security protection Provides device &
I/O support

★ Important Note: Objects are extensible. You can build
your own based on the primitives. Many kernel code
does just this dynamically.

credit: Dave Probert, Ph.D (Singapore 2006), Microsoft Corporation 2006

Thursday, July 15, 2010

The Security Reference Monitor (SE):
★ Based on discretionary access controls

★ Single module for access checks (e.g. SeAccessCheck())

★ Implements Security Descriptors, System and
Discretionary ACLs, Privileges, and Tokens

★ Collaborates with Local Security Authority Service
(LSASS) to obtain authenticated credentials

★ Provides auditing and fulfills other Common Criteria
requirements

credit: Dave Probert, Ph.D (Singapore 2006), Microsoft Corporation 2006

Thursday, July 15, 2010

How OB and SE interact:

credit: Dave Probert, Ph.D (Singapore 2006), Microsoft Corporation 2006

Note:
A “Name” might be:
\\.\pipe\protected_storage

Thursday, July 15, 2010

Remember! Handles/Descriptors are just
userland abstractions!

credit: Dave Probert, Ph.D (Singapore 2006), Microsoft Corporation 2006

• Handles and Descriptors are just Userland abstractions to
access Kernel structures.

• The functions you pass the Handles and Descriptors into
(like fopen()) are userland “gateways” to the kernel

Thursday, July 15, 2010

NT Objects (the object “primitives”)
Adapter File Semaphore
Callback IoCompletion SymbolicLink
Controller Job Thread
DebugObject Key Timer

Desktop KeyedEvent Token
Device Mutant Type
Directory Port Waitable Port
Driver Process WindowsStation

Event Profile WMIGuid
EventPair Section

Thursday, July 15, 2010

Listing/Investigating NT Objects

★ WinObj (SysInternals)
★ objdir.exe (DDK)
★ ntddk.h
★ Ob*() exports of ntoskrnl.exe
★ “Undocumented Windows

2000 Secrets” Chapter 7
(w2k_def.h)

★ dt nt!_object* (in Windbg
(kd))

★ !object \ (in Windbg (kd))

Thursday, July 15, 2010

First things first...why go up here?

★ Reasons for using kernel debugger to assist us with
investigating sandboxes:

1. Sandboxes use many NT Objects that have helpful
Windbg commands that don’t work from userspace:
1. Jobs Objects for example! (!job)
2. LPC inspection (!lpc)
3. better handle/descriptor visibility/tracking (!htrace)

2. “System-Wide” breakpoints: Breaking on ntdll!
NtOpenFile() will hit whenever any process on the system
calls it!

3. There are also some other less popular benefits to using
kernel debugger (will demonstrate these with Google
Chrome later :-)

Thursday, July 15, 2010

Inspecting Securable Objects with
Kernel Debugger
★ !process <cid>

★ !handle <cid>

★ !job

★ !token

★ !tokenfields

★ !object

★ !sd see “Determining the ACL
of an Object” in the Windbg help
for all the steps to obtaining a
detailed security descriptor from
an object

★ !acl

★ !sid

★ !lpc

Side Note: Did you know you don’t need to use gflags.exe
to set pageheap/debugheaps? You can use Windbg’s !gflag

Thursday, July 15, 2010

Other useful commands
★ .tlist : This also lists processes but only by CID and

not process identifier.

★ !process 0 0 : List all cids/processes

★ .process

★ .reload /user :Reload userspace symbols

★ .sympath symsrv*symsrv.dll*c:\\syms*http://
msdl.microsoft.com/download/symbols
• Autodownload of symbols you dont have... VERY USEFUL!

★ lm u :list modules for userspace, needs a .process

Thursday, July 15, 2010

http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols

A Note on Observing Hooks from
Kernel Debugger
★ Important to remember: in the kernel only “one copy”

of libraries (like ntdll) ever get loaded.
★ The “differences” between processes is all done via the

magic of Page Table Entries. You will probably not be
able to see installed library hooks if you don’t do the
following in Windbg:
• use the /p switch with the .process command to force the debugger to

update Page Table translation: .process /p <eprocess|cid>

★ This is done so that when you view the virtual address
for NTDLL or Kernel32 or whatever, it correctly
references the physical page, which differ because of
the hooks.

★ Note: you may also want to check out the Windbg .pagein
command. You might have to use this command as
another way to force Windbg to update PTE translation.

Thursday, July 15, 2010

Observing Broker Behaviors
★ There are a number of functions critical to the

operation of Sandbox child processes that are
interesting and useful to observe the Broker calling.
Here are some suggestions:

Note: Most of these are “undocumented”.
• Zw/NtDuplicateToken()
• Zw/NtCreateToken()
• Zw/NtSetInformationToken()
• Zw/NtOpenProcess()
• Zw/NtDuplicateObject()
• DuplicateHandle()
• Zw/NtCreateProcess()
• Zw/NtSetSecurityObject()
• NtQueryObject(), NtSetSecurityObject(), NtQuerySecurityObject()
• ExDupHandleTable()/ExDestroyHandleTable (process creation/destruction)
• ExCreateHandle(), ExDestroyHandle()
• user32!UserHandleGrantAccess()

Thursday, July 15, 2010

Observing Sandbox Behaviors

★ Because the Sandbox is restricted we care less
about what he is doing, but there are a few
interesting things to watch for. Here are some
suggestions:

Note: Most of these are “undocumented”.

• ZwContinue(): the _NTCONTINUE function that is often hooked
by anti-debugging code (not that Chrome does it)

• ZwCreateFile()
• ZwWriteFile()

Thursday, July 15, 2010

A Neat thing about Kernel Debuggers

★The kernel gets ALL exceptions first!

★ Like virtually all Windows functionality, Usermode
debuggers rely heavily upon LPC messages.

★ “Debugger” processes talk to CSRSS via LPC
★ CSRSS receives all debug events for all processes from the

kernel and handles dispatching them debugger processes.
★ When a Kernel debugger is attached, the Kernel never

passes these exceptions on to CSRSS’s waiting LPC
channel.

★ The most important thing however is that the Kernel gets
all exceptions first, especially int 3, which is what Chrome
sandbox uses to taddle-tell back to the Broker ;-)

★ In Vista/Win7 this is different: see ZwCreateDebugObject()

Thursday, July 15, 2010

TANGENT: Detecting Kernel Mode
Debuggers from Userspace
★ Once you know about how Kernel mode debuggers get

all exceptions first, the concept is simple:

Use RDTSC single-step detection technique with int3s
in-between to detect kernel debugger exception

handler timing.
★ Furthermore, int3s fired at the “wrong time” break

things. See for yourself.
★ If you dig a bit under the hood to understand the

process around ZwCreateDebugObject (XP+), how
CSRSS passes debug info, and stuff like
EPROCESS.DebugPort and \Windows\ApiPort you will
probably find better ways to detect Kernel debuggers
from userspace

Thursday, July 15, 2010

TANGENT: Detecting Kernel Mode
Debuggers from Userspace

How it might look in C?

How it might look in
ASM?

Thursday, July 15, 2010

If you fuzzed sandboxed processes and had
“success” you’ve probably seen this (I call it

“Chrome Mr. Yuck”):

but when you attach your user-space debugger....nothing.
That’s because the Broker catches sandbox exceptions

and breakpoints first!

Thursday, July 15, 2010

Google being snide about Broker-
handled Sandbox exceptions...
On the Chromium website, down in some documentation

Google mentions this:

This is no mystery at all when you realize that the Sandbox
(the debuggee) is coded to intentionally whine to the Broker
by throwing exceptions which the Broker (as the debugger)

then “handles”.
GOOGLE DOES NOT USE THE OS’S CRASH

REPORTING MECHANISMS (like WER in Windows or
Crash Reporter in OSX). It uses it’s own custom one

called BreakPad.
Pro-tip: If fuzzing Chrome, be sure to set your ZoneAlarm/LittleSnitch/whatever to disallow

Chrome outbound. Or better yet, disable the NIC entirely for that VM ;-)

Thursday, July 15, 2010

Example of Remotely Triggered (client side)
overflow (handled)

Thursday, July 15, 2010

Tools & Techniques:
Introducing The SandKit

Thursday, July 15, 2010

The SandKit
A Collection of tools to assist with the investigation

and testing of Sandboxes.
(Also intended to give ideas about tools you might want to write yourself.)

• Code Injection Techniques (vanilla dll injection, reflective dll injection, kernel-
to-userspace dll injection?)

• CopyMem
• MemDiff
• DumpMem
• HookFix
• Sa7Shell
• BinCompare
• DumpToken Redux
• TokenBrute/HandleBrute
• Sandbox_Poc (Google Chrome source “sub-project”)

• Download the Chrome source and find it in:
• /home/chrome-svn/tarball/chromium/src/sandbox/sandbox_poc/
• It comes with visual studio solution and everything!

Thursday, July 15, 2010

Code Injection

★ Sandkit implements “Vanilla DLL injection” to inject a
DLL into a target process.
• This injection technique is the VERY common: OpenProcess()/

VirtualAllocEx()/CreateRemoteThread()->LoadLibraryA() technique.

★ Reflective DLL injection
• for “harder” injection targets such as restricted processes or heavily

hooked executables.
• some minimal unhooking would still necessary
• Sandkit may eventually include this.

★ Kernel-to-userspace Injection?
• Use documented APC Injection/Thread Notifier technique to have

kernel injected code run in a usermode Thread’s context
• Combine this with basic Reflective DLL injection technique
• MANY caveats: accounting for PTE changes when injected code

executes (hooks still in place), modifying PTE for usermode context,
etc.

Thursday, July 15, 2010

CopyMem
★ Copy memory from one process into another. This

tool is the basis for the HookFix application

Thursday, July 15, 2010

MemDiff
★ Take a look into memory in two different processes and compare it.

Log where the two regions of memory begin to differ.
★ Simple but time-saving tool for the detection of hooks

Thursday, July 15, 2010

DumpMem

★ Similar to the .writemem command in Windbg. Just
write raw memory from a process to a file

Thursday, July 15, 2010

WriteMem

★ Write a string or
character array
directly to the
memory of a
process.

Thursday, July 15, 2010

HookFix

★ HookFix just uses CopyMem to fix the specific
hooks put in placed into the Sandbox by the
Broker.

★ There is no magic here, we just:
1. Borrow the .text region of a “normal” process with our module

loaded (in this case the Broker).
2. Locate the differences between the “normal” and modified .text

regions within the Sandbox
3. Save the Sandbox modules .text region first (for restoration).
4. Overwrite the Sandbox module’s .text region

Note: We have to just be careful to not to borrow stuff outside of .text,
because there

are “process specific” variables in the address space of dlls like ntdll.
Such as:

ntdll!__security_cookie

Thursday, July 15, 2010

Sa7Shell
After using the Sandkit DLL injector, you get a

console window!

Thursday, July 15, 2010

Sa7Shell
Messing around inside the process (notepad.exe)

like Message Box popups!

Thursday, July 15, 2010

Sa7Shell: How does it work?
★ Inject the full Python interpreter into a target

process, and mess around with it internally!
• This may sound trivial to do with vanilla DLL injection and it (for the

most part is).
• However you have to handle special cases like: If your injected DLL

does printf()s, where does STDOUT go in a GUI app?
• Answer: AllocateConsole() and then my “handle shenanigans”

Thursday, July 15, 2010

Sa7Shell: Handle Shenanigans

Thursday, July 15, 2010

PythonShell command in Sandkit
Drop directly into a python shell from Sandkit to fiddle:

Thursday, July 15, 2010

BinCompare (stand-alone)
★ A standalone tool that does the same thing that memdiff

does but specifically for files instead of just memory.
★ One of those stupidly simple things that is massively useful.

Thursday, July 15, 2010

DumpToken Redux

★ A Dll’d and .h’d
version of Matt
Conover’s DumpToken
tool with additional
native API helpers
such as
NtQueryObject
ObjectTypeInformation

★ The .h and .dll make it
easily reusable in your
injectable code.

This screenshot is from code that has been injected into an
app using Sandbox_PoC from Google Chrome.

Thursday, July 15, 2010

TokenBrute/HandleBrute: A Token/
Handle Sniper
★ Inspired by a part of Cesar Cerrudo’s (MS04-044)

PoC
★ a Dll’d and .h’d tool that “snipes” or “steals” tokens

granted into a process by brute forcing token
handles

★ Not magic. surprisingly simple actually. Iterates 0 to
MAX_HANDLES (10,000 on XP) in separate thread.

★ Also uses DumpToken Redux to display info if token
is found.

This is just “identification” but you get the concept ;-)
Thursday, July 15, 2010

Where do I get all this stuff?

How can I follow up after this talk?

Thursday, July 15, 2010

Where to get it?

★ Sandkit and this presentation is here:

http://s7ephen.github.com/
SandKit

★ Get these slides there.

★ Follow on Github for updates. (As I package/sanitize
my private tools for public release I will be adding
them to the SandKit project.)

Thursday, July 15, 2010

http://s7ephen.github.com/SandKit
http://s7ephen.github.com/SandKit
http://s7ephen.github.com/SandKit
http://s7ephen.github.com/SandKit

In a nutshell:
For Bug Hunters:

Things to look into.

For Sandbox Developers:
Things to look out for.

Thursday, July 15, 2010

Notes for Sandbox Developers

★ Auditing sandboxes is entirely a “configuration” audit
game.

★ Applications written without sandboxing in mind have
the worst trouble shoe-horning into a sandbox

★ Exhaustively check everything from the inside of the
Sandbox out. Try to make these test cases integral parts
of your build/release process.

★ Don’t “cheat” and pass tokens/handles/etc into the
sandbox! Even for a “quick moment”.

★ Merely having the sandbox doesn’t secure you. You
must should how to configure it (build PolicyFilters,
install your own Intercepts even!)

Thursday, July 15, 2010

Notes for Sandbox Pen-testers/
Reversers
★ There are really two audits: Audit of the “Sandbox”

itself and Audit of the “Sandbox implementation”
• “Sandbox” bugs will be where the Sandbox meets the OS/Kernel or the

IPC channels back into the “Broker”. These are harder and higher
value ;-)

• “Sandbox implementation” bugs will be where the Sandbox meets the
application’s requirements. These are specific to the app.

★ Applications written without sandboxing from the
ground up will have difficulty shoe-horning into a
sandbox
• The larger the application, the higher probability something (a legacy

library, thread, etc) will require lax token restrictions and SID filters.

★ If you have code execution inside the sandbox, don’t
be afraid to have your code “wait patiently” for the
proper execution environment.

Thursday, July 15, 2010

Do you need any work like this?
★ Software Reverse Engineering?
★ Penetration Testing?
★ Source Code Auditing?
★ Security Architecture Analysis?
★ Embedded System Security?
★ Security Consultation?
★ Cryptography Implementations?
★ Blackbox auditing of software/hardware?
★ Whitebox auditing of software/hardware?
★ Web application penetration testing?

Matasano does all of this!
Contact Me for more Info!
stephen@matasano.com

Thursday, July 15, 2010

mailto:rfp@matasano.com
mailto:rfp@matasano.com
mailto:rfp@matasano.com
mailto:rfp@matasano.com
mailto:rfp@matasano.com
mailto:rfp@matasano.com

Special Thanks and Contact Info

Thursday, July 15, 2010

Stephen C. Lawler
Mathieu “Sandwich” Suiche

Stephania Vu
Google Security Team

My Mt. Whitney Summit Team
(Hai, Quynh, Rick, Nick)

The “customer” who approved and
cleared me to give this talk ;-)

SPECIAL THANKS

Thursday, July 15, 2010

THANKS FOR Listening!
I hope this is helpful.

stephen@sa7ori.org
Twitter: s7ephen

Thursday, July 15, 2010

mailto:stephen@sa7ori.org
mailto:stephen@sa7ori.org

