DEEEnSEY

Process Stalking
Run-Time Visual Reverse Engineering

Pedram Amini - pamini(didefense.com

Introduction and Aienda Deren==®

- Pedram Amini
e Assistant Director, IDEFENSE Labs
e Security researcher, developer and reverse engineer
e IDEFENSE Vulnerability Contributor Program

http://labs.idefense.com

- Background information
- Overview and design

- Features and benefits
- Demonstrations

— In development

- Conclusion

Introduction

Call Graphs

- Disassembled binaries can be visualized as graphs
e Functions = nodes

e Calls = edges
— |IDA supports this type of visualization

— Useful for viewing the relationships between functions

A

sub_00000010()

sub_00000110()

A 4

IDEFENSE

sub_00000AE0()

_snprintf(Q)

sub_00000110()

sub_00000110()

recv()

A

However...

sub_00000110()

\/

AN

sub_00000110()

Background Information

)

Ni)

Call Graphs A ——

- In most real-world scenarios, function call graphs can be
unmanageable and down right frightening:

T
L=

IER

(ke

Background Information

Control Flow Graphs (CFGs) DErens=®

- Functions can also be visualized as graphs

e Basic blocks = nodes e

_ 00000011 mov ebp, esp
° BranCheS - edges 00000013 sub esp, 128h

00000025 jz 00000050

00000010 sub_00000010
00000010 push ebp

00000011 mov ebp, esp
00000013 sub esp, 128h

00000025 jz 00000050 -
0000002B mov eax, OAh 0000002B
00000030 mov ebx, OAh 0000002B mov eax, OAh

00000030 mov ebx, OAh

00000050 xor eax, eax
00000052 xor ebx, ebx

- IDA also supports this type of visualization 00000050
00000050 xor eax, eax

— Useful for easy viewing of execution paths RRRIER SEIF G2 @

- pGRAPH

Background Information

RE Analisis Challenies DErEnsEY

- Input tracing
e What code handles our inputs?

— Code coverage
e How we can we determine where our fuzzer has gone?
e How can we get our fuzzer deeper into the process?

- Complexity
e How can we digest/understand mass volumes of machine code?

- Filtering
e How can we filter uninteresting trace data? (Example: GUI handling code]

- Trace speed
e How can we increase the speed of our tracing?

Background Information

)

Process Stalker Overview DEFENSE Y

- Requirements
e |IDA Pro (commercial
e Python (free]
e Oreas GDE Community Edition (free)

- Components
e |DA plug-in
e Standalone tracer
e Python scripts

— Development
o C/C++
e Python + custom API
e Function Analyzer / Dumbug

- Related work
e Sabre Security, BinNavi
e HBGary, Inspector
e S|Secure? (Rootkit.com screenshot]

Overview and Design

)

Data Flow Diagram erenes®

- Load binary in IDA

% 2 |3
- Exportto FS >

- Stalk process Oreas GDE %.

- Record

- Process results

@
- View in GDE
- Instrument graphs

- View in GDE again

_——
I B v
— ~ | Filesystem
- Breakpoint Lists
N ~ -XREF Files
%- - GML Graphs

- Recordings

- Make edits

- Mark locations

- Export back to IDA

Overview and Design

Process Stalker IDA Plui-in Internals peEFEnsE?

— Built on top of Function Analyzer
- Analysis routine is applied to each identified function

- Breakpoint entries are generated for every node:
e ndmpsrvr.dll: :0002b29c
e Module, node offset

- Cross reference entries are generated for every call:
e 0002cbdO: :0002bb20
e Function offset, , called function offset

— Customized .GML graph’s are generated for each function:

e ndmpsrvr.dll-010aTaf0.gml
e ndmpsrvr.dll-010a1b20.gml

Overview and Design

)

Process Stalker Tracer Internals DEFENSEY

— Built on top of Dumbug

— Attach to or load a target process

- On DLL load events
e Determine module base address
Add loaded module to linked list
Automatically import available breakpoints
Add function-level breakpoints to self-balanced tree*

— On breakpoint events

e |f recording, write entry to file:
— 0008c29d: :IMComms.dLl:10001000:0000d25d
— GetTickCount(), , module, module base, breakpoint offset

e Optionally raise breakpoint restore flag and SINGLE_STEP

Overview and Design

)

Process Stalker Scriit Internals iDEFENSE Y

— Written in Python

- Process Stalker API: gml, ps_parsers
e GML: Can parse and manipulate generated .GML files

e PS PARSERS: Can parse and manipulate breakpoint lists, recordings,
cross-reference lists and register metadata files

e Fully documented

— Various functionality already implemented:
e Recording -> list -> breakpoint filter
e Graph concatenation with optional cross referencing
e Recursive graph visualization
e Run trace “folding” for loop visualization
e And more...

Now the pretty slides...

Overview and Design

Visual Run-Time Tracin DEFERSE Y

- Immediately see which nodes handle your input
- View graphs with different layout algorithms
- View relevant register data

nnnnnnnn

gee
1
oo
BB BE

AN

nnnnnnnn

Hierarchical layout Cluster orthogonal layout

Features and Benefits

Automated Hi

hii

htin

IDEFENSE

@

- Potentially interesting nodes are automatically highlighted

- ex: reps, *str*, *wcs*, *alloc*, *mem*

C : E
/J 1
73
] - /\
< \ / “ -~ // \\
. J //,
a - AN
\\ 7
"
S (\Z |
N v
N { =
.=

Features and Benefits

/

01004187

N1O3L71R87T | as

e

et

Alternative Paths Derense Y

- Easily view and examine branch conditions
- Determine changes required to get fuzzer "deeper” into process state

mov eax, coffset aFa_se

catt \
- l

e N 01006216

& \
/
/ \\ push eax
I 5, | puch offset alNdmp process m
\ ' I push 2zZh
\ \ / call ?LogDebugRETRXKFBDZZ
\ = /7 mov esi, [esp-dzk+targ 4]

\\ S add esp, 0OCh

I B :
cmp €351, ebp
AN jz loc 10J4ADD
\,

\

L |
01005a32

cmp edi, cbp
Jz loc 1006ADD

o % Wa Wa W=ttt I

Features and Benefits

Sieed erene=®

— Much faster than single-step tracing

— Two modes of operation
e Breakpoint restore
e One shot

- Breakpoint filtering can further improve performance
e Functions only
e Potentially interesting modules only
e See next slide

Features and Benefits

)

Filtel'ing DEFENSE Y

- Recordings can be joined and/or
diffed

- Example: GUIl handling code can
be recorded and diffed out

- MS05-030: MSOE.DLL
e Black: GUI functions
e Red: Non-GUI functions

Features and Benefits

)

State Maiiini RN

- ex: Authenticated vs. non-authenticated code

— ex: What our fuzzer has reached vs. what our fuzzer can reach

B ! R 1
JEE = |
e =T
|
5
[——
s

Features and Benefits

)

Recording Statistics R

— Node hit counts
— Node transition times

$ ps view recording stats 2284.0.000003d8-processed
function block hit counts for module
46011500 5 46014e81 46012510 4

4600b010 2 460179e0 4600ae70 4
4601559e 1 46006820 46006630 24

function transition times (nilliseconds) for module

4600560 40 460067e0 46001560 0]
46006820 0O 46006630 4601559e 0]
46006630 21 4600f560 460067e0 10
46001560 0O 46001690 4600560 0]

Features and Benefits

Demonstration

Command Line Arguments PEN—

- Incase you can’t see them during the demo

$ process_stalker

process stalker

pedram amini <pedram.amini@gmail.com>
compiled on Jun 14 2005

usage:
process_stalker < pid | filename | filename args>

specifty the breakpoint list for the main module.
recorder] enter a recorder (0-9) from trace initiation.
1 disable breakpoint restoration.
disable register enumeration / derefencing.

Demonstration

More Commands R

ps_process_recording gui_shit
cat gui_shit.* > guil_shit.processed

wc —1 gui_shit.processed
4455 gui_shit.processed

time ps_bp_ Filter msoe.dll_bpl msoe.dll_nogui \
“ps_recording_to_list gui_shit.processed msoe.dll” out
real Om28.367s

wc —1 msoe.dll_bpl msoe.dll._nogui
58165 msoe.dll_bpl
50560 msoe.dll_nogui

time ps_view_recording_funcs 844.1_processed > hitgraph.gml
real Om7.446s

time ps_graph_highlight —nodes hit hitgraph.gml > hitgraph_hl_gml
real Om5.795s

time ps_add register_metadata 844-regs.l hitgraph_hl.gml > with_regs.gml
real Om7.977s

Demonstration

In Develoiment N

- Still working on this stuff:

e Argument dereferencing
- With automatic detection of ASCII and Unicode strings

e Smarter highlighting

— Other ideas:
e Arbitrary data structure visualization
e Data flow visualization

- Potential design changes:
e Remove dependency on IDA
e Switch from debugger to emulation instrumentation (BOCHS)

In Development

)

Questions and Thanks DEFENSE

®
- Thanks to

e [DEFENSE Labs

e Gerry Eisenhaur

e Gael Delalleau

e Nicolas RUFF

e Anyone else | may have forgotten

- And especially ... Mike the intern for taping together the graph blanket

Conclusion

