
Process Stalking
Run-Time Visual Reverse Engineering

Pedram Amini – pamini@idefense.com

Introduction and Agenda

– Pedram Amini
• Assistant Director, iDEFENSE Labs
• Security researcher, developer and reverse engineer
• iDEFENSE Vulnerability Contributor Program

http://labs.idefense.com

– Background information
– Overview and design
– Features and benefits
– Demonstrations
– In development
– Conclusion

Introduction

Call Graphs

– Disassembled binaries can be visualized as graphs
• Functions = nodes
• Calls = edges

– IDA supports this type of visualization
– Useful for viewing the relationships between functions

Background Information

sub_00000010() sub_00000110()

_snprintf() recv()

sub_00000AE0() sub_00000110()

sub_00000110()sub_00000110()sub_00000110()

– However…

Call Graphs

– In most real-world scenarios, function call graphs can be
unmanageable and down right frightening:

Background Information

Control Flow Graphs (CFGs)

– Functions can also be visualized as graphs
• Basic blocks = nodes
• Branches = edges

Background Information

00000010 sub_00000010
00000010 push ebp
00000011 mov ebp, esp
00000013 sub esp, 128h
…
00000025 jz 00000050

00000050
00000050 xor eax, eax
00000052 xor ebx, ebx
…

0000002B
0000002B mov eax, 0Ah
00000030 mov ebx, 0Ah
…

– IDA also supports this type of visualization
– Useful for easy viewing of execution paths
– pGRAPH

00000010 sub_00000010
00000010 push ebp
00000011 mov ebp, esp
00000013 sub esp, 128h
…
00000025 jz 00000050
0000002B mov eax, 0Ah
00000030 mov ebx, 0Ah
…
00000050 xor eax, eax
00000052 xor ebx, ebx
…

RE Analysis Challenges

– Input tracing
• What code handles our inputs?

– Code coverage
• How we can we determine where our fuzzer has gone?
• How can we get our fuzzer deeper into the process?

– Complexity
• How can we digest/understand mass volumes of machine code?

– Filtering
• How can we filter uninteresting trace data? (Example: GUI handling code)

– Trace speed
• How can we increase the speed of our tracing?

Background Information

Process Stalker Overview

– Requirements
• IDA Pro (commercial)
• Python (free)
• Oreas GDE Community Edition (free)

– Components
• IDA plug-in
• Standalone tracer
• Python scripts

– Development
• C/C++
• Python + custom API
• Function Analyzer / Dumbug

– Related work
• Sabre Security, BinNavi
• HBGary, Inspector
• SISecure? (Rootkit.com screenshot)

Overview and Design

Data Flow Diagram

Overview and Design

- Load binary in IDA

- Export to FS

- Stalk process

- Record

- Process results

- View in GDE

- Instrument graphs

- View in GDE again

- Make edits

- Mark locations

- Export back to IDA

- Recordings

Oreas GDE

Process Stalker IDA Plug-in Internals

– Built on top of Function Analyzer

– Analysis routine is applied to each identified function

– Breakpoint entries are generated for every node:
• ndmpsrvr.dll:0002b1b0:0002b29c
• Module, function offset, node offset

– Cross reference entries are generated for every call:
• 0002cbd0:0002cc34:0002bb20
• Function offset, node offset, called function offset

– Customized .GML graph’s are generated for each function:
• ndmpsrvr.dll-010a1af0.gml
• ndmpsrvr.dll-010a1b20.gml

Overview and Design

Process Stalker Tracer Internals

– Built on top of Dumbug

– Attach to or load a target process

– On DLL load events
• Determine module base address
• Add loaded module to linked list
• Automatically import available breakpoints
• Add function-level breakpoints to self-balanced tree*

– On breakpoint events
• If recording, write entry to file:

– 0008c29d:000005cc:IMComms.dll:10001000:0000d25d
– GetTickCount(), thread ID, module, module base, breakpoint offset

• Optionally raise breakpoint restore flag and SINGLE_STEP

Overview and Design

Process Stalker Script Internals

– Written in Python

– Process Stalker API: gml, ps_parsers
• GML: Can parse and manipulate generated .GML files
• PS_PARSERS: Can parse and manipulate breakpoint lists, recordings,

cross-reference lists and register metadata files
• Fully documented

– Various functionality already implemented:
• Recording -> list -> breakpoint filter
• Graph concatenation with optional cross referencing
• Recursive graph visualization
• Run trace “folding” for loop visualization
• And more…

Now the pretty slides…

Overview and Design

Visual Run-Time Tracing

– Immediately see which nodes handle your input
– View graphs with different layout algorithms
– View relevant register data

Features and Benefits

Hierarchical layout Cluster orthogonal layout

Automated Highlighting

– Potentially interesting nodes are automatically highlighted
– ex: reps, *str*, *wcs*, *alloc*, *mem*

Features and Benefits

Alternative Paths

– Easily view and examine branch conditions
– Determine changes required to get fuzzer “deeper” into process state

Features and Benefits

Speed

– Much faster than single-step tracing

– Two modes of operation
• Breakpoint restore
• One shot

– Breakpoint filtering can further improve performance
• Functions only
• Potentially interesting modules only
• See next slide

Features and Benefits

Filtering

– Recordings can be joined and/or
diffed

– Example: GUI handling code can
be recorded and diffed out

– MS05-030: MSOE.DLL
• Black: GUI functions
• Red: Non-GUI functions

Features and Benefits

State Mapping

– ex: Authenticated vs. non-authenticated code
– ex: What our fuzzer has reached vs. what our fuzzer can reach

Features and Benefits

Recording Statistics

– Node hit counts
– Node transition times

Features and Benefits

$ ps_view_recording_stats 2284.0.000003d8-processed

function block hit counts for module irc.dll

46011500 5 46014e81 1 46012510 4
4600b010 2 460179e0 1 4600ae70 4
4601559e 1 46006820 4 46006630 24
...

function transition times (milliseconds) for module irc.dll

4600f560 40 460067e0 0 4600f560 0
46006820 0 46006630 0 4601559e 0
46006630 21 4600f560 60 460067e0 10
4600f560 0 46001690 0 4600f560 0
...

Demonstration

Command Line Arguments

Demonstration

$ process_stalker
process stalker
pedram amini <pedram.amini@gmail.com>
compiled on Jun 14 2005

usage:
process_stalker <-a pid | -l filename | -la filename args>

options:
[-b bp list] specify the breakpoint list for the main module.
[-r recorder] enter a recorder (0-9) from trace initiation.
[--one-time] disable breakpoint restoration.
[--no-regs] disable register enumeration / derefencing.

– Incase you can’t see them during the demo

More Commands

Demonstration

$ ps_process_recording gui_shit

$ cat gui_shit.* > gui_shit.processed

$ wc –l gui_shit.processed
4455 gui_shit.processed

$ time ps_bp_filter msoe.dll.bpl msoe.dll.nogui \
`ps_recording_to_list gui_shit.processed msoe.dll` out
real 0m28.367s

$ wc –l msoe.dll.bpl msoe.dll.nogui
58165 msoe.dll.bpl
50560 msoe.dll.nogui

$ time ps_view_recording_funcs 844.1.processed > hitgraph.gml
real 0m7.446s

$ time ps_graph_highlight –nodes hit hitgraph.gml > hitgraph_hl.gml
real 0m5.795s

$ time ps_add_register_metadata 844-regs.1 hitgraph_hl.gml > with_regs.gml
real 0m7.977s

In Development

In Development

– Still working on this stuff:
• Argument dereferencing

– With automatic detection of ASCII and Unicode strings

• Smarter highlighting

– Other ideas:
• Arbitrary data structure visualization
• Data flow visualization

– Potential design changes:
• Remove dependency on IDA
• Switch from debugger to emulation instrumentation (BOCHS)

Questions and Thanks

Conclusion

– Thanks to
• iDEFENSE Labs
• Gerry Eisenhaur
• Gaël Delalleau
• Nicolas RUFF
• Anyone else I may have forgotten

– And especially … Mike the intern for taping together the graph blanket

