Main:
Introduction:
Hello.

This talk will cover various areas involved with making binaries harder to analyse,
reverse engineer and modify. Additionally it will cover various mechanisms that can be
used to watermark a binary.

Accompanied with this presentation is a relatively in-depth paper on the subject as well,
mainly covering implementation of such techniques on the Linux operating system. The
slides and paper will be on the recon cd. Additionally, the talk notes and slides will be
available via the felinemenace papers section.

In the interest of having this presentation applicable and useful for everybody, I've
decided to keep it at a moderate technical level, and for some areas this covers, include

some basics on the subject. However, striking a good combination between the two is
difficult.

If you have questions during the presentation, I'd prefer it if it was brought up at the end
of the talk. Thanks.



Defence in depth:

Defence in depth is a term borrowed from the military and it is used to describe defensive
measures that reinforce each other and that hide the defenders activities from being
observed.

Defence in depth usually starts off by defining the problems, rating their significance, and
then analysing the problems in depth. Once a clear picture has been obtained, potential
methods and ideas to protect the system is then evaluated.

Clearly identifying what you're trying to protect against is important as its easy to go off
and lose track of your end goals.

As time goes by, you'll need to re-evaluate what you've implemented, how you've
implemented it, and what other people have done with regards to your approach. They
could of found methods that bypass its protection altogether, or significantly weakened it.
If this is the case, you'll need to examine what they've done, and what methods you can
use to make your protection better and thwart their attack.



Defence in depth (cont):

By analysing your plans for an attackers point of view, you will be be able to identify
what you would of proposed to do as being weak, or not worthwhile to implement due to
time constraints involved. Ask yourself what you can do things to make it more robust, or
that attackers have less chance of modifying the protection binary successfully?

During the attack analysis, you will probably think of additional methods that will help
your efforts in thwarting an attacker. These should be carefully analysed to see if they are
effective, and if its feasible to implement.

If you haven't analysed things from other peoples perspective before, it can take a little bit
of effort to get used to. Learning what the attackers are capable of, and testing the things
out yourself, will help improve your plans for preventing them.

One aspect which some people seem to sprout off as being a good idea, is to somehow
damage ones computer if they detect software that can be used to analyse a programs
operation, such as softice.

While the motivation aspect of this can be seen from a developers eyes, there are many
cases where people will legitimately have such software on their machine, for example,
driver developers, or security analysts. As there are tools out there to hide various
debuggers from being seen by applications, it usually isn't that much of an added
protection. Therefore, you'll run the risk of annoying legitimate customers of your
software.

In additional to that, in many countries it is illegal to do deliberately damage the computer
systems. Given those points, it would be a bad idea to do anything that would break
various laws in the countries where your software is sold.

A better, and more constructive use of your time would be to work out various ways of
misleading and slowing down a potential attacker on your software.

For example, If you detect a debugger actively debugging your binary, you could change
various algorithms so that it results in incorrect execution, or invalid values being used.
Be sure to separate cause and effect so they don't recognise immediately that the logic
choice you're using is going to cause it to break.

By utilising various techniques to inhibit an attacker, you'll increase the amount of time,
motivation and skill needed to break the protection schemes around the binary, and thus
provide more time until, eventually, the attackers goal has been reached.



Defence in depth (cont)

To summarise the slide, in general, a majority protection schemes generally implement
various layer defences in the sense that you can attack and remove layers generally
without impacting the operation of the protected binary.

If a protection scheme is going to be robust against analysis and attack, it needs to have it
so that attacks on the protection overall reach into the core stability, usability and
functionality of the program.

I'd like to end this section off with a quote from Nietzsche, "He who fights with monsters
should look to it that he himself does not become a monster. And when you gaze long
into an abyss, the abyss also gazes into you.". The relevance of this is left up to the people
present to determine.



Watermarking
<watermarking history>

Watermarking can be useful in many situations, such as tracking and identifying whose
copy of the software was released to various warez groups for example. By letting your
users know you have the capability to identify who released the software, you deter them
from doing so.

Apart from the deterrence factor, another benefit from watermarking is obvious if you
have the ability to either prosecute the people responsible, or, the ability to sully the
reputation of the company who is responsible. Unfortunately, watermarking doesn't
prevent against general fraud to obtain the software.

In general, a fragile watermark is used for authentication and integrity attestation, and is
used to guarantee that an item, for example, a document had came from the right place.
An attack on these type of watermark would be to modify the item without breaking the
watermark.

On the other hand, we have robust watermarks. Robust watermarks are generally used for
copyright purposes, or authenticating who had originally inserted the watermark. An
attack on robust watermarks would to modify the item in some way to either render the
watermark ineffective, or to remove the watermarks presence.

Watermarks are also have another property which indicates if the watermark is visible or
invisible. Visible watermarks are meant to be publically recognisable, and can be human
perceivable. Invisible watermarks on the other hand are meant to be recognisable only to
authorised people, and thus makes it harder to know where to attack to break the
watermark.

Depending on how much effort you wish to put into designing the watermarking system,
and how its going to be used, there are various methods that can be used to insert the
watermark.

The most simple one to insert is a basic incrementing counter. This system is obviously
weak if an attacker has more than one copy of the software. When an attacker has
multiple copies of differently watermarked items, analysing it is known as a conclusive
attack, as the attacker has multiple copies available to analyse.

Other areas that can be used for storing the watermark in can be the order of certain
operations. An often cited example is how various initial values for a function are loaded.
For example, 2 variables can be initialised in two different orders.

This method is also vulnerable to the above described attack. The best method to work
around this is to make each binary as different as possible. For example, the compiler
flags, such as optimisation flag, can be changed, the order of which object files are read in
can be modified, the layout of structures can be randomised per compile for each
customer. In turn, the transformation of the binary by the randomisation can be used to



identify whose copy it is.

There has been some research into the feasibility of making software watermarks tamper
proof so that it becomes a lot more difficult to remove watermarks without impacting the
correct operation of the program.

To summarise a research paper entitled (XXX), they make a graph and parse it during
run-time to obtain data constants used in the program, and use the obtained value in an
operation, such as addition, or printing a string.

Because the data used for returns are also used in parsing the graph, in theory, if you
change the value, the correctness of the program is in jeopardy in other parts of the code
that rely on it.



Obfuscation
Obfuscation is the act of deliberately making something harder to analyse and understand.

The aim of obfuscation is to increase the time, skill, and cost required to analyse the
protected code. Obfuscation can be applied at both the source code level, and assembly
level.

The probably most famous obfuscated source code would be that from the International
Obfuscated C Code Contest (also known as IOCCC), which is a annual competition that
has been running since 1985, and is where people can submit their obfuscated code to be
judged.

While obfuscated source code may be useful for some purposes, it is not the end product
that is shipped to the end customers, and thus generally isn't the best place to focus your
efforts.

Some people have previously tried to obfuscate stuff by having large amounts of junk
code, which doesn't really help for obvious reasons.

Some viruses, such as JunkComp, used techniques such as:

- Prefixes on instructions that it doesn't make sense on. For example, repeat while not
zero on a subtraction instruction.

- Opaque conditionals to trick control flow analysis

- Alias opcodes (for example, mov eax, ebx can be encoded two ways)

While those effects measures were semi-effective, the mechanisms were being used as a
wrapper around the true virus code. Since the true virus code could be reached, it could
be analysed and taken apart.

Implementing a serious obfuscation engine is a lot more involved, and has various aspects
and things to consider.

Code layout obfuscation covers the area of changing the layout of the code. For example,
it might be splitting a function into small blocks and spreading them all over the binary,
changing variable lifetimes and variable ordering.

Data obfuscation covers making references to data harder to analyse. For example, it
could be converting static data to into a function where the string is generated, inserting
more references to data to make it harder to locate a certain object you're after.

Control obfuscation covers breaking inserting opaque conditionals, making logic choices
harder to determine by static analysis, duplicating blocks of code and independently
obfuscating each block, and making changes to the control flow. Some of those changes
could include flattening the control flow so that its not irreducible.

Pre-emptive obfuscation covers inserting specific obfuscation constructs to target a



particular problem. Some things that are worth targeting are how hard it is to
automatically unobfuscate a binary, and how hard it is for a human to unobfuscate it.



Obfuscation (cont)

As determined by Christian Collberg, Clark Thomborson and Douglas Low in their paper
entitled “A Taxonomy of obfuscating transformations”, obfuscation is classified by its
potency, resiliency, and cost. For more information, see the above mentioned paper.

The term potency refers to how much time, effort and skill is required by a human to
understand, and remove, the obfuscation construct. Various methods may dramatically
increase the potency of the algorithm, but may not necessarily reflect upon the other
targets.

The term resiliency refers to how much time, effort and skill an attacker needs to write a
program to automatically unobfuscate a construct, and how much resources the
unobfuscator requires to run. Increasing the resiliency will help prevent automated
unobfuscators.

The term cost refers to about the impact of implementing the previous two methods on
the execution of the program. For example, a method that causes huge memory usage or a
long execution time to run would be said to have a large cost.

By using these metrics, it is possible to objectively rate the usefulness of particular
constructs and decide if and when to include them.



Obfuscation (cost)
Control flow obfuscation

Opaque constructs are code blocks which always result in the same output. The general
aim of an opaque construct is to be difficult to identify and remove, thus increasing the
resiliency of the affected code.

Opaque constructs can be inserted and used in logic decisions and data decisions.

The term “instruction context” refers to analysing a block of code, and determining if the
instructions depend on a certain order of execution, what ways the registers are used and
determining the lifetime of the registers.

Once that information has been gathered, it is possible to rewrite the instruction context.
Some possible things that might be done are modify which registers are being used, what
arguments are being passed to instructions, and insert irrelevant instructions.

By sampling the instructions in the program that you are obfuscating, you can make it so
that the instructions you're inserting are similar to the ones that already exist, and in the
same frequency as previously. This helps hide where the inserted instructions were
placed.

In order to make automated analysis harder of the inserted instructions, serious thought
should be given to make it so that the program reads and writes to memory after operating
on registers.

This then makes it significantly harder to automatically analyse as the resulting code, as
the instructions can be no longer marked as spurious if they're shown that the registers are
stored to, and then just stored into again, without being read from.

Automated analysis of control flow loops can be made harder by inserting new
constraints inside loops. The aim here it to break standard compiler-generated loops so
that it is harder to automatically identify and recover them.

This could be via an opaque construct which always ends up adding 0 to a value which is
used in the conditional check, inserting spurious instructions between initialising values
and adding extra comparisons which has no effect.

Data obfuscation

Data obfuscation is where you obscure the data used in the program and make it harder to
find where various pieces of data are instantiated and used.

By converting static data into pieces of code, you can make it so that it is harder to
analyse and modify, as people need to first locate where the data is being initialised, and
what constraints are being placed on it



The references to static data can be easily obtained in the object files during compilation
time, as there will be relocation entries which patch up the binary during the linking
stage. This allows us to easily convert pieces of data into functions without worrying
about following execution flow, and finding all references to it.



Obfuscation (cont)

By adding new cross references to existing data blocks, it makes it look as if that data
block is used more than what it appears to be, and additionally slightly more memory for
in the analysis program to hold all the cross references.

By modifying the vtable in ct++ classes, the functions inside a class can be rearranged, and
new junk functions can be added or inserted into the class. If the class is to have its vtable
rearranged, the obfuscating code would have to track through all the appropriate code,
and modify them so they point to the correct entry.

As well as modifying a class's vtable, you could modify structure layouts and add extra
items of various types and preform dummy operations on it. This increases the time
involved with reconstructing what a specific structure is used for, and what its members
are, and how they are referenced.

In order to increase the time needed to analyse structure usage, you could implement a
simple linked list or doubly linked list that gets modified over time.

In order to increase time involved with analysing parts of a binary, certain data types
could be converted into a class. The class would then be responsible for performing the
various operations on the file, such as addition, and subtraction. Additionally to that, it
could be made to appear that the class is also doing a lot more.

Control Flow obfuscation

Code can be split into so called basic blocks by identifying blocks of instructions that
don't rely on previous instructions to perform their operations. Once the chunk of code
that is to be optimised has been broken down into basic blocks, they can then be operated
on.

If you have some instructions inside a basic block that don't rely on each other, the
instructions could be swapped around to make it slightly harder for humans to analyse.

Additionally, after the basic blocks has been gathered, you can independently obfuscate
them. Some of the operations that you might add to the the blocks are add reversible
operations to the basic blocks, such as adding / subtracting a number to a register, or
changing which register is being used for certain operations.

The operations will need to be reversible so that if there is a basic block that has other
code references to it, they can converge and be continue executing fine.

Code flow reduction is where you remove modify the code flow conditionals to be flat as
possible, thus removing a fair amount of information available about a program's
behaviour, and depending on implementation, a fair bit harder to recover that
information.



Disadvantages to obfuscation?

The control flow reduction could be achieved by implementing a switch table, and setting
up the switch value inside the code, or other methods such as calculating the address to
jump to, and jumping to it from a central point. The more resistant it is to static and
runtime analysis, the better the method is, and the harder it will be for people to recover
the code flow.

In general, you'll want to reserve obfuscation for the important functions, as it will have
an adverse performance impact. The effort of implementing a decent obfuscation
algorithm will also impact upon delivery times for the software.

Of course, you could go for a commercial product to implement them, but you won't
necessarily know how good they are, and people who are interested in attacking your
software will have a slight advantage as more people will have analysed that protection
scheme for implementation weaknesses.



Licensing schemes (change?)

A decent licensing implementation will take a fair amount of effort to implement so that
it is stable, reliable, and provides a decent amount of security against determined
attackers. Ideally, you'd like the licensing scheme to be robust even after they've paid for
the software.

It seems obvious, but if you don't want someone to have access to pieces of code or data
in your demo version, don't include it in the demo version. If the license scheme is based
upon on people entering a license code, you could generate a decryption key from the
license data. Depending on the implementation, you may accidentally make it so that the
protected data or code can be trivially recovered.

In order to improve the robustness of the licensing code, the licensing code should
directly related to the correct operation of the program, thus causing incorrect operation
should an invalid license code be entered.

One method of doing this is to utilise the license code in logic and data choices in your
code. With logic choices, you would have two versions of code, but one would be slightly
buggy. With data choices, you could use it to set flags correctly for functions that takes
flags. You would have to make it hard to identify where the checks are coming from by
making it hard to follow the data.

The aim behind this is to make it extremely hard to follow all the logic choices in the
application, and to follow all the data paths as well. This will result in people having to
spend significant time analysing the code and data flow trying to determine if its relevant.

If the license code is based upon people entering a string, you can make life a little bit
easier for them by including a tiny 1 or 2 byte checksum. This allows you to inform the
user if they've entered an incorrect license code without giving anything away about the
validity of the license code, or how it was generated.

This also provides a slight detour for an attacker, as they may see the checksum compare
and think they need to patch their, or alternatively, they'll try and write a license key
generator.

By using the license code information without checking it for correctness, you are
avoiding giving away potentially critical hints to an attacker, which in turn means they
may have to spend more time analysing the code to see what it is doing.

After sketching out your license scheme, how it operates, and what it will affect, think
about ways you can break the system. Depending on what you're aiming for, you may
want to improve upon what you have already outlined, and find other methods.



Virtual Machines

Virtual machines are self-contained, emulated machines which have their own assembly
language, and memory areas. They can be extremely simple, or extremely complex. Such
a complex one would be Java, although the Java implementation has a lot to be desired
with how hard it is to analyse.

Virtual machines can be complete byte code driven, or they can use a Just In Time
compiler to generate code that is executable on the native CPU the virtual machine is
running on.

Since Virtual Machine instructions and implementation can be whatever the creator
dreams up, they usually involve a fair amount of analysis to determine what opcodes are
available, and what they can do. Then they have to get familiar with how the code
implemented in the Virtual Machine is put together and what constructs are used, which
makes it harder and more time consuming to analyse.

The general disadvantage with Virtual Machines is that they take a fair amount of effort
to implement and design, and then to write the code that is executed in them.
Additionally, generally, they only need to be analysed and understood once, before they
use loose their usefulness.

This can be offset however, because its possible to randomise how the byte sequence is
decoded, what the bytes map to, and how parameters to the op code is accessed. This
allows for a bit of leeway. Additionally, some other measures can be taken, for example,
the byte sequence to be decoded can configure various parameters of the virtual machine.



Bastardising the file format 1

The general idea behind the modification of the executable file headers is to cause the
program using to analyse the file to misbehave in some way, such as crashing the
program or system, and generating incorrect output from what would be expected of the
program being used, and in general to make the process a bit more painful for people.

Some techniques involve stripping the section tables or munging the symbol table from
ELF files, inserting incorrect program headers which the analysis tools parse, or
specifying invalid sizes which cause various tools to loop for a while and allocate large
amounts of space.

For ELF, a lot of tools use the section table, and thus its more useful to make that
completely misleading. A method of doing this is to append another binary to your
executable, and pointing the section header to that ones section header, and fixing up the
file offsets so they all point to the other binary.

New methods can be developed by analysing how the operating system and associated
tools load the binary, and comparing with how the analysis tools parse the binary, and
using the differences to attack the tools.

However, this is a standard arms race. Once you use these methods, or develop new
methods, people will identify the cause of the problem, and will come up with fixes, even
if it involves hand-patching the vulnerable binary.



Bastardising the file format 2

There are a couple of various disadvantages with this, which may merit concern. For
starters, there is portability between OS's and various emulators, such as WINE. Most
people tend to expect they can use their programs across different releases of OS's, and

some people like to be able run their software on other operating systems under emulators
such as WINE.

Additionally, occasionally you may like to debug your own binaries, and you can't
reconstruct the errors when you use the binaries that haven't been modified. And
sometimes when you modify binaries in certain ways, anti-virus software picks them up
as being suspicious, which then reflects badly upon your software.



Summary

In order to effectively slow down and deter attackers from breaking what you've done, the
best method is to utilise multiple layers that interlock, and that aim to protect each other
from being analysed. The more robust and reliable the implementation is, the longer it
will last.

- don't check values for consistency / correctness, just use them straight away
- learn to attack your own implementations, in order to identify weaknesses

- Perhaps keep an eye out on forums / etc

- Realise when and where to focus your efforts.

- Have fun in the process.



Summary (cont)
reword, make longer. perhaps mention trusted computing.
However, if people are significantly determined, nothing is unbreakable given todays

open hardware. While there is trusted computing in the horizon, time will tell if it is
sufficent



